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Genomic knowledge representation



• Gene set annotation
• Range based annotation
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Gene set annotation



Why we need functional annotations?
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• Annotations are stored knowledge from previous biological
experiments.

• Functional annotations are essential for the interpretation of gene sets
obtained from the upstream analysis.

• Gene set enrichment is calculated via the statistical association
between gene functions and gene sets.



Gene Ontology: use general biological 
knowledge to annotate genes

“An ontology is a formal representation of a body 
of knowledge within a given domain.” 

—- From Gene Ontology website 

The Gene Ontology (GO) describes our knowledge of the biological domain with 
respect to three aspects:


• Molecular Function: Molecular-level activities performed by gene products. 


• Cellular Component: The locations relative to cellular structures in which a
gene product performs a function.

• Biological Process: The larger processes, or ‘biological programs’
accomplished by multiple molecular activities.

For example, the gene product “cytochrome c” can be described by 
the molecular function oxidoreductase activity, the biological process oxidative 
phosphorylation, and the cellular component mitochondrial matrix.

http://geneontology.org/docs/ontology-documentation/
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KEGG: gene annotation via signaling pathway
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Calculating statistical association 
between annotations

User 
Genes Genome

In 
Pathway 10 30

Not 
Pathway 4 60

• Fisher’s exact test is often used to calculate p-value of association 
between gene sets and functional terms.

• The p-value is calculated by the hypergeometric distribution:

1. Enumerate all possible 2 by 2 tables that are as or more associated 
than the observed given fixed margins (column and row sums).

2. Use hypergeometric distribution to calculate the probabilities of each 
table, sum them up and you will get the p-value.
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Range based annotations



Genomic Feature Extraction

The genome coordinate of a locus:  
(Not necessarily a gene)

Information 
stored in 
transcript  
annotations  
(GTF/GFF files)

Range based annotations
Transcript annotation

Overlapping with 5’UTR, CDS, 
3’UTR, intron, exon or not?

Properties of the overlapped features, 
e.g. length, GC content, state of
evolutionary conservation.

• Gene & Transcript annotations from GTF/GFF files are often used to annotate
range based genomic experiments (e.g. peaks from CHIP-Seq).



• ,5*6+,�Z[HUKZ�MVY�,5*`JSVWLKPH�6M�+5(�,SLTLU[Z�
• 0[�Z�H�KH[HIHZL�[OH[�JVSSLJ[Z�OPNO�X\HSP[`�KH[H�HIV\[�LWPNLUL[PJ�THYRLYZ��

L_WYLZZLK�[YHUZJYPW[Z��HUK�LWP[YHUZJYPW[VTPJ�THYRLYZ�
• ,5*6+,�\ZLZ�Z[YPJ[�HUK�^LSS�KVJ\TLU[LK�KH[H�WYVJLZZPUN�WPWLSPULZ�[V�LUZ\YL�

KH[H�X\HSP[`�
• 9LZLHYJOLYZ�JHU�\ZL�[OL�LWPNLUL[PJ�THYRLYZ�MYVT�,5*6+,�[V�HUUV[H[L�[OLPY�

V^U�L_WLYPTLU[Z�

Other range based annotations
Epigenetic markers



Introduction to biological networks



Correlational v.s. causal gene networks

Types Description Example

Correlational graphs  
(undirected graph)

Represent the positive / negative correlation 
between genes. The significantly correlated 
genes are linked by an undirected edge.

PPI network, 

gene co-expression 
network

Cause-effect graph 
(directed graph)

Describe the relationship of causality 
between genes, such as a gene is changed 
upon the action of another gene. The 
direction of the arrowed edge represents 
cause and effect.

Cell signaling network, 
epigenetic regulatory 
network



Representation: adjacency matrix

A
B

C
D

Adjacency matrix:  A

• Nodes: A, B, C, D
• Edges: A <-> B, B <-> C, C <-> D, D <-> A
• The whole network structure can be specified by an  adjacency matrix, 

where  is the number of nodes.

•  if nodes  and  are connected from  to .

• Can be softly weighted by probabilities, i.e. 

n × n
n

Aij = 1 i j i j
Aij ∈ [0,1]

From

 (node i)

To

(node j)



Degree of node

A
B

C
D

• Neighbors are pairs of nodes connected by an edge.

• Degree ( ) of a node counts the number of edges connecting its
neighbors to it.


• Degrees for an undirected graph can be calculated by the row
sums of the adjacency matrix.

k

Degree of node C = 3



Random v.s. Scale-free Network

• The distribution of degrees over a 
graph reveals essential network 
properties.

• In random network, edges are 
added to node pairs with equal 
probabilities.

• The degree distribution for random 
network is Poisson distribution.

  

• The degree distribution for scale
free network is power distribution.

• In scale-free network, the 
probability of adding a new edge 
from node i to a new node 
increases as the degree of node 
increases.

i

scale free
P(k) ∼ k−λ; λ < 3 ⇒



Properties of scale-free network

• Average steps between a random pair of nodes in a graph of size :

For a random network, the average path length is

For a scale-free network, the average path length is

There by, information transfer is more efficient on a scale-free network.


• When “attacks” are made by removing nodes from the graph:

If the failures happened randomly, the scale-free network is more likely 
to survive than the random network.


If the failures are targeted toward the hub nodes (the nodes with 
highest degree), then the scale-free network is more vulnerable than 
the random network.

n

∼ log(n)


∼ log(log(n))




Essential proteins are hub-nodes

• A protein is essential if its knock-down is lethal.
• In yeast PPI network, the proteins with higher degree (more direct interactions with other

proteins) are more likely to be essential proteins.
• 2240 edges are formed among 1870 nodes (proteins) in yeast PPI network.
• 93% of proteins have degrees < 3, among them, 21% are essential to yeast survival.
• 0.7 % of proteins have > 15 degree, and 62% of those are essential.
• The overall correlation coefficient between lethality and connectivity is 0.76.



Co-expression network



Gene expression 
level matrix
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How to construct gene network from gene 
expression levels?



Workflow of co-expression network analysis

• Pairwise correlation used to construct network
• Clustering identifies modules
• Differential co-expression analysis identifies regulatory genes
• Guilt-by-association approach identifies potential disease genes



Limitation of Pearson correlation

• Pearson correlation cannot capture non-linear interaction (last row).

https://en.wikipedia.org/wiki/Correlation



Performances of different network inference methods

Marbach, Daniel, et al. "Wisdom of crowds for robust gene network inference." Nature methods 9.8 (2012): 796-804.

AUPR: area under precision-recall curve



GINIE3: a high performing network inference algorithm

To create a gene regulatory network in GINIE3:


• For each gene, train Random Forest predictors (  ) with its expression levels as output and
other genes' levels as input.


• For each predictors, rank all input genes by feature importance.

• Combine the rankings of all predictors to get the edge scores for network's regulatory links.

fj

Top 1 performance in DREAM4 competition. 

Huynh-Thu, Vân Anh, et al. "Inferring regulatory networks from expression data using tree-based methods." PloS one 5.9 (2010): e12776.
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