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Gene set annotation



Why we need functional annotations?
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* Annotations are stored knowledge from previous biological

experiments.

* Functional annotations are essential for the interpretation of gene sets
obtained from the upstream analysis.

* (Gene set enrichment is calculated via the statistical association
between gene functions and gene sets.



Gene Ontology: use general biological
knowledge to annotate genes

“An ontology is a formal representation of a body N
of knowledge within a given domain.” ( 80: GENEONTOLOGY

Unifying Biology
—- From Gene Ontology website

The Gene Ontology (GO) describes our knowledge of the biological domain with
respect to three aspects:

 Molecular Function: Molecular-level activities performed by gene products.

 Cellular Component: The locations relative to cellular structures in which a
gene product performs a function.

* Biological Process: The larger processes, or ‘biological programs’
accomplished by multiple molecular activities.

For example, the gene product “cytochrome c¢” can be described by
the molecular function oxidoreductase activity, the biological process oxidative
phosphorylation, and the cellular component mitochondrial matrix.


http://geneontology.org/docs/ontology-documentation/

GO Graph
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The Gene Ontology (GO) is
represented as a graph with
terms as nodes and
relationships between terms
as edges.

GO is hierarchical, with more
specific child terms and more
general parent terms.

Terms can have multiple
parent terms.



KEGG: gene annotation via signaling pathway
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* KEGG is a database for
understanding biological

SyStemS. The KEGG pathway map for glycolysis /
gluconeogenesis

* KEGG pathway maps are
molecular interaction/reaction
networks represented in terms
of KEGG Orthology groups.

* These maps can help
generalize experimental
evidence from one organism to
others based on genomic
information.




Calculating statistical association
between annotations
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* Fisher’s exact test is often used to calculate p-value of association
between gene sets and functional terms.

* The p-value is calculated by the hypergeometric distribution:

1. Enumerate all possible 2 by 2 tables that are as or more associated
than the observed given fixed margins (column and row sums).

2. Use hypergeometric distribution to calculate the probabilities of each
table, sum them up and you will get the p-value.



Range based annotations



Range based annotations
Transcript annotation
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Overlapping with 5’UTR, CDS,
3’UTR, intron, exon or not?

 Gene & Transcript annotations from GTF/GFF files are often used to annotate
range based genomic experiments (e.g. peaks from CHIP-Seq).



Other range based annotations
Epigenetic markers
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* ENCODE stands for ENCyclopedia Of DNA Elements.

* It's a database that collects high-quality data about epigenetic markers,
expressed transcripts, and epitranscriptomic markers.

* ENCODE uses strict and well-documented data processing pipelines to ensure
data quality.

* Researchers can use the epigenetic markers from ENCODE to annotate their
own experiments.



Introduction to biological networks



Correlational v.s. causal gene networks
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Represent the positive / negative correlation PPl network,
between genes. The significantly correlated |gene co-expression
genes are linked by an undirected edge. network

Correlational graphs
(undirected graph)

Describe the relationship of causality

Cause-effect graph between genes, such as a gene is changed Ce_II S|gngllng network,
di d h upon the action of another gene. The epigenetic regulatory
(directed graph) direction of the arrowed edge represents network

cause and effect.




Representation: adjacency matrix

Adjacency matrix: A

0 A B C D
%G A0 1 1 1
from B |1 0 1 1

G Q e c [1 1 0 1
D [1 1 1 0

To
(node j)

Nodes: A, B, C, D

Edges:A<->B,B<->(C,C<->D,D<->A

The whole network structure can be specified by an n X n adjacency matrix,
where n is the number of nodes.

Al-j = 1 if nodes i and j are connected from i to j.

Can be softly weighted by probabilities, i.e. Aij e [0,1]



Degree of node
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* Neighbors are pairs of nodes connected by an edge.
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» Degree (k) of a node counts the number of edges connecting its
neighbors to it.

e Degrees for an undirected graph can be calculated by the row
sums of the adjacency matrix.



Random v.s. Scale-free Network

The distribution of degrees over a
graph reveals essential network
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Properties of scale-free network

« Average steps between a random pair of nodes in a graph of size n:
© For a random network, the average path length is ~ log(n)

© For a scale-free network, the average path length is ~ log(log(n))

There by, information transfer is more efficient on a scale-free network.

* When “attacks” are made by removing nodes from the graph:

o If the failures happened randomly, the scale-free network is more likely
to survive than the random network.

o If the failures are targeted toward the hub nodes (the nodes with
highest degree), then the scale-free network is more vulnerable than

the random network.



Essential proteins are hub-nodes

Published: 03 May 2001 i :-"- P
Lethality and centrality in protein networks
H. Jeong, S. P. Mason, A.-L. Barabdsi & & Z. N. Oltvai .- . '__:. : ::-'-E:'. f j-l..:i': -_:'l‘r- ".:" :-'--- -'..-z - .. 7 : |

Nature 411, 41-42 (2001) | Cite this article
15k Accesses 3417 Citations ‘ 33 Altmetric | Metrics

A protein is essential if its knock-down is lethal.

In yeast PPI network, the proteins with higher degree (more direct interactions with other
proteins) are more likely to be essential proteins.

2240 edges are formed among 1870 nodes (proteins) in yeast PPl network.

93% of proteins have degrees < 3, among them, 21% are essential to yeast survival.
0.7 % of proteins have > 15 degree, and 62% of those are essential.

The overall correlation coefficient between lethality and connectivity is 0.76.



Co-expression network



How to construct gene network from gene
expression levels?
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Gene 15 expression

Gene 11expression

Workflow of co-expression network analysis
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Limitation of Pearson correlation
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» Pearson correlation cannot capture non-linear interaction (last row).

https://en.wikipedia.org/wiki/Correlation



Performances of different network inference methods

Table 1 | Network inference methods

ID Synopsis Reference

Regression: transcription factors are selected by target gene-specific (i) sparse linear-regression and (ii) data-resampling approaches.

1 Trustful Inference of Gene REgulation using Stability Selection (TIGRESS): (i) Lasso; (ii) the regularization parameter selects five 332
transcription factors per target gene in each bootstrap sample.

2 (i) Steady-state and time-series data are combined by group Lasso; (ii) bootstrapping. 342

3 Combination of Lasso and Bayesian linear regression models learned using reversible-jump Markov chain Monte Carlo simulations. 352

4 (i) Lasso; (i) bootstrapping. 36

5 (i) Lasso; (ii) area under the stability selection curve. 36

6 Application of the Lasso toolbox GENLAB using standard parameters. 37

7 Lasso models are combined by the maximum regularization parameter selecting a given edge for the first time. 362

8 Linear regression determines the contribution of transcription factors to the expression of target genes. —ab

Mutual information: edges are (i) ranked based on variants of mutual information and (ii) filtered for causal relationships.

1 Context likelihood of relatedness (CLR): (i) spline estimation of mutual information; (ii) the likelihood of each mutual information score is 112b
computed based on its local network context.

2 (i) Mutual information is computed from discretized expression values. 3g2b

3 Algorithm for the reconstruction of accurate cellular networks (ARACNE): (i) kernel estimation of mutual information; (ii) the data 9ab
processing inequality is used to identify direct interactions.

4 (i) Fast kernel-based estimation of mutual information; (ii) Bayesian local causal discovery (BLCD) and Markov blanket (HITON-PC) 392
algorithm to identify direct interactions.

5 (i) Mutual information and Pearson’s correlation are combined; (ii) BLCD and HITON-PC algorithm. 392

Correlation: edges are ranked based on variants of correlation.

1 Absolute value of Pearson’s correlation coefficient. 38

2 Signed value of Pearson’s correlation coefficient. 3gab

3 Signed value of Spearman’s correlation coefficient. 3gab

Bayesian networks: optimize posterior probabilities by different heuristic searches.

1 Simulated annealing (catnet R package, http://cran.r-project.org/web/packages/catnet/), aggregation of three runs. —

2 Simulated annealing (catnet R package, hyperlink above). —

3 Max-min parent and children algorithm (MMPC), bootstrapped data sets. 40

4 Markov blanket algorithm (HITON-PC), bootstrapped data sets. 41

5 Markov boundary induction algorithm (TIE*), bootstrapped data sets. 42

6 Models transcription factor perturbation data and time series using dynamic Bayesian networks (Infer.NET toolbox, —2
http://research.microsoft.com/infernet/).

Other approaches: network inference by heterogeneous and novel methods.

1 GENIE3: a Random Forest is trained to predict target gene expression. Putative transcription factors are selected as tree nodes if they 192
consistently reduce the variance of the target.

2 Codependencies between transcription factors and target genes are detected by the nonlinear correlation coefficient n2 (two-way ANOVA). 202
Transcription-factor perturbation data are up-weighted.

3 Transcription factors are selected by maximizing the conditional entropy for target genes, which are represented as Boolean vectors with 432
probabilities to avoid discretization.

4 Transcription factors are preselected from transcription-factor perturbation data or by Pearson’s correlation and then tested by iterative 44
Bayesian model averaging (BMA).

5 A Gaussian noise model is used to estimate whether the expression of a target gene changes in transcription-factor perturbation measurements. 45

6 After scaling, target genes are clustered by Pearson’s correlation. A neural network is trained (genetic algorithm) and parameterized 462
(back-propagation).

7 Datais discretized by Gaussian mixture models and clustering; interactions are detected by generalized logical network modeling (? test). 472

8 The x? test is applied to evaluate the probability of a shift in transcription-factor and target-gene expression in transcription-factor 472
perturbation experiments.

Meta predictors: (i) apply multiple inference approaches and (ii) compute aggregate scores.

1 (i) z scores for target genes in transcription-factor knockout data, time-lagged CLR for time series, and linear ordinary differential- 482
equation models constrained by Lasso (Inferelator); (ii) resampling approach.

2 (i) Pearson’s correlation, mutual information and CLR; (ii) rank average. —

3 (i) Calculates target-gene responses in transcription-factor knockout data, applies full-order, partial correlation and transcription factor- —2
target codeviation analysis; (ii) weighted average with weights trained on simulated data.

4 (i) CLR filtered by negative Pearson’s correlation, least-angle regression (LARS) of time series, and transcription factor perturbation data; 49

5

(2) combination by z scores.
(i) Pearson’s correlation, differential expression (limma), and time-series analysis (maSigPro); (ii) naive Bayes.

Methods have been manually categorized based on participant-supplied descriptions. Within each class, methods are sorted by overall performance (see Fig. 2a). Note that generic references
have been used if more specific ones were not available.

2Detailed method description included in Supplementary Note 10; P0ff-the-shelf algorithm applied by challenge organizers.
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Marbach, Daniel, et al. "Wisdom of crowds for robust gene network inference." Nature methods 9.8 (2012): 796-804.



GINIE3: a high performing network inference algorithm

Expression data
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To create a gene regulatory network in GINIES:

e For each gene, train Random Forest predictors ( ]5-) with its expression levels as output and

other genes' levels as input.
* For each predictors, rank all input genes by feature importance.

e (Combine the rankings of all predictors to get the edge scores for network's regulatory links.

Huynh-Thu, Vén Anh, et al. "Inferring regulatory networks from expression data using tree-based methods." PloS one 5.9 (2010): e12776.
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