

# BIO214 Lecture 8

**Bioinformatics-II** 

Finding Patterns in Normalized Omics Data - 2

Zhen Wei; 2023-Feb-14

# Outline

- Clustering v.s. Classification
- Hard clustering v.s. Soft clustering
- Differential expression analysis

# Clustering v.s. Classification

#### **Expression analysis data matrix**

• (Normalized) measures of 20000 genes in 100s of conditions



#### Clustering v.s.



Goal of Clustering: <u>Group similar items</u> that likely come from the same category, and in doing so <u>reveal hidden structure</u>.

Unsupervised learning

Goal of Classification: Extract features from the data that best <u>assign new</u> <u>elements</u> to ≥1 of <u>well-defined classes</u>.

Classification

Supervised learning

### Clustering v.s. Classification

Objects characterized by one or more features

#### Classification (supervised learning)

- Have labels for some points
- Want a "rule" that will accurately assign labels to new points
- Sub-problem: Feature selection
- Metric: Classification accuracy

#### Clustering (unsupervised learning)

- No labels
- Group points into clusters based on how "near" they are to one another
- Identify structure in data
- Metric: independent validation features



Feature X (brain expression)



Feature X (brain expression)

Randomly Initialize cluster centers

• E step:

Assign data points to nearest clusters.

• M step:

Recalculate cluster centers.

• Repeat... until convergence.



- Randomly Initialize cluster centers
- E step:

Assign data points to nearest clusters.

M step:

Recalculate cluster centers.

• Repeat... until convergence.



- Randomly Initialize cluster centers
- E step:

Assign data points to nearest clusters.

• M step:

Recalculate cluster centers.

Repeat... until convergence.







- Randomly Initialize cluster centers
- E step:

Assign data points to nearest clusters.

• M step:

Recalculate cluster centers.

• Repeat... until convergence.







#### Classification: random forest algorithm



- Create N bootstrap samples, which are training sets re-sampled with replacement.
- Build a (randomized) decision tree on each bootstrap sample.
- Average the predictions made by the N randomized decision trees (averaging the predictions of multiple models is called **ensemble**)

# Soft clustering and its application

### What about assigning clusters "softly"?

#### Hard clustering assignment:

#### **Soft clustering assignment:**



## Soft clustering: Gaussian mixture model



$$\mathbb{P}(x_i | C_i = 3) = \frac{\pi_3 f_3(x_i)}{\pi_1 f_1(x_i) + \pi_2 f_2(x_i) + \pi_3 f_3(x_i)}$$

Formula for calculating the probability of point  $x_i$  assigned to the 3rd gaussian distribution, where  $f_k$  is the Gaussian pdf,  $\pi_k$  is the class specific weight.

- Randomly Initialize Gaussian distribution parameters ( $\mu$ ,  $\sigma^2$ ).
- E step:

Assign data points to each Gaussian distribution by probabilities.

M step:

Recalculate Gaussian distribution parameters (using weighted estimators).

• Repeat... until convergence.

Weighted mean: 
$$\bar{x}_w = \frac{\sum_i w_i x_i}{\sum_i w_i}$$
;

Weighted variance: 
$$s_w^2 = \frac{1}{d} \sum_i w_i (x_i - \bar{x}_w)^2$$

### **Application of Gaussian mixture model**

Cell types identification in scRNA-Seq



• The dimensional reduction techniques are doing the "feature extraction" for clustering.

#### Batch effect correction in scRNA-Seq

#### Harmony



# Harmony



Tran, Hoa Thi Nhu, et al. "A benchmark of batch-effect correction methods for single-cell RNA sequencing data." Genome biology 21 (2020): 1-32.

# Differential expression analysis

## Differential expression analysis

#### m samples (biological replicates) for each group



Differential expression

#### Inference for differential expression

#### Challenges of data randomness

- Suppose we have 2 coins and we want to know if the probability of getting heads is different for the 2 coins.
- We first collect a data of coin tosses as the following:





|        | Head | Tail |
|--------|------|------|
| Coin 1 | 2    | 2    |
| Coin 2 | 3    | 1    |

2/4 is different from 3/4, but is the difference "significant" enough against the randomness?

After collecting more outcomes, what conclusion can we draw now?

|        | Head | Tail |
|--------|------|------|
| Coin 1 | 236  | 175  |
| Coin 2 | 187  | 314  |

#### p-value: overcoming randomness



- First, assume that there is no difference between 2 coins (null hypothesis).
- Then, calculate the probability of generating data as extreme or more extreme than the observed data under the null assumption.
- The calculated probability is called a p-value, and it can be obtained by either probabilistic modeling or simulation methods.
- If the p-value is sufficiently small (e.g. < 0.05), it indicates that the data reject the null assumption of no difference.

## Statistical Modeling: rethinking of data

Well understood process in probabilistic world:

|        | Head | Tail  |
|--------|------|-------|
| Coin 1 | 10   | 10000 |
| Coin 2 | 25   | 15000 |

Can be used to represent



Data we want to model in practice:

|                  | Read count on region x | Read count on other regions |
|------------------|------------------------|-----------------------------|
| NGS library<br>1 | 10                     | 10000                       |
| NGS library<br>2 | 25                     | 15000                       |

#### Statistical Modeling: formulation

We could write it down in the statistical modeling terms:

count\_1 ~ binomial(  $p = p_1$ , N = total reads count in library 1)

count\_2 ~ binomial(  $p = p_2$ , N = total reads count in library 2)

Or equivalently:

count\_1 ~ Poisson( $\lambda = p_1 \times \text{total reads count in library 1})$ 

count\_2 ~ Poisson( $\lambda = p_2 \times \text{total reads count in library 2})$ 

$$H_0: p_1 = p_2; H_1: p_1 \neq p_2$$

- The hypothesis pair above can be evaluated by the exact test for binomial or Poisson (c-test).
- This test can be used in DGEA of RNA-Seq when there are no replicates available.
- It can also be used to determine the threshold for peak calling in CHIP-Seq using a control sample.

## 1st challenge of p-value: multiple hypothesis testing

Can Jelly Beans Cause Acne?













WE FOUND NO



















### Solution for the 1st challenge

#### Adjusted p-values for multiple hypothesis testing

- In differential gene expression analysis, multiple p-values are calculated over 20000 genes, therefore multiple hypothesis correction is necessary.
- Two metrics are often used:
- Family wised error rate (FWER) controlled by H0 True Bonferroni correction.
- 2. False discover rate (FDR) controlled by Benjamini-Hochberg correction.
- Bonferroni corrected p-value is defined by
   m × p-value, where m is the total number of
   tests conducted (e.g. the # of genes in
   differential expression analysis).
- Filtering Bonferroni corrected p-value at 0.05 ensures FWER < 0.05.</li>

#### Retain H0 Reject H0

H1 True

| а        | b        | a+b = m0       |
|----------|----------|----------------|
| С        | d        | c+d = m1       |
| a+c = n0 | b+d = n1 | a+b+c+d<br>= m |

FWER := P(b>0|m)

FDR := b/n1

# 2nd challenge of p-value: we may fail to define the randomness accurately



Read counts on Gene LSR1 over biological replicates

- In practice, the distribution of read counts across biological replicates follows a
  negative binomial (NB) distribution rather than a Poisson distribution.
- Many classic statistical models (e.g. Poisson/binomial models) fail to account for the over-dispersed nature of genomic count data.

### Solution for the 2nd challenge

Selecting suitable statistical distribution for your data



- It is important to use a statistical model that **specify** the data, i.e. the model used should be able to generate the observed data under some parameterization.
- This can be done by examining the goodness of fits of different distribution families on the data; statistical test should be constructed using the best fitting distribution family.

# Summary of the commonly used statistical tests in genomics

| Distribution family     | Data type             | Support                  | Statistical test                            | Application in genomics                                                          |
|-------------------------|-----------------------|--------------------------|---------------------------------------------|----------------------------------------------------------------------------------|
| Binomial or multinomial | Binary or categorical | $\{0,1,\cdots,n\}$       | Fisher's exact test;<br>Chi-squared test    | Test for 2 X 2 contingency table;<br>Gene set enrichment analysis;<br>GWAS       |
| Gaussian                | Continuous            | $[-\infty, +\infty]$     | t-test<br>( <b>limma</b> )                  | Differential expression analysis for micro-array data                            |
| Poisson                 | Count                 | $\{0,1,\cdots,+\infty\}$ | Fisher's exact test;<br>Exact binomial test | Differential analysis for NGS without biological replicates (e.g. peak calling)  |
| Negative<br>binomial    | Count                 | $\{0,1,\cdots,+\infty\}$ | NB test<br>( <b>DESeq2, edgeR</b> )         | Differential analysis for NGS with biological replicates (e.g. DGEA for RNA-Seq) |

# 3rd challenge: limited sample size estimating gene variances

Uncertainty of variance estimation drops with sample size



Red: fitted regression curve, in which the fitted values will be used for differential testing

Black: estimated gene dispersions on limited samples



- Tests integrating multiple replicates require the estimation of dispersion parameters (e.g. Gaussian  $\sigma^2$  and NB over-dispersion parameter).
- Many experiments only have 2 or 3 replicates, this is too few for accurate dispersion parameter estimation.
- One solution is to use a smooth curve to predict gene dispersions from gene means, which shares information between all genes. This approach is commonly used by DGEA packages such as Limma, EdgeR, and DESeq2.