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Outline

* Clustering v.s. Classification
* Hard clustering v.s. Soft clustering

* Differential expression analysis



Clustering v.s. Classification



Expression analysis data matrix

* (Normalized) measures of 20000 genes in 100s of conditions
Condition 3

Condition 2
Condition 1 \\ d samples

Gene similarity questions

« Gene clustering
e Gene classification

n genes

t |

e Sample clustering

Experiment similarity questions Sample classification



Clustering V.S. Classification
- IndePendent nalidation .
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Goal of Clustering: Group similar items

lymphoma (DLBCL)

that likely come from the same category,
and in doing so reveal hidden structure.

 Unsupervised learning
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Goal of Classification: Extract features
from the data that best assign new
elements to =1 of well-defined classes.

* Supervised learning



Clustering v.s. Classification

Objects characterized by one or more features

Classification (supervised learning)

Have labels for some points

Want a “rule” that will accurately assign labels to
new points

Sub-problem: Feature selection
Metric: Classification accuracy

Clustering (unsupervised learning)

No labels

Group points into clusters based on how “near” they
are to one another

|dentify structure in data
Metric: independent validation features
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Clustering: K-Means clustering algorithm

Randomly Initialize cluster centers o
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Assign data points to nearest clusters. o
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Recalculate cluster centers. O

Repeat... until convergence.



Clustering: K-Means clustering algorithm

Randomly Initialize cluster centers
E step:
Assign data points to nearest clusters.
M step:
Recalculate cluster centers.

Repeat... until convergence.




Clustering: K-Means clustering algorithm

Randomly Initialize cluster centers

o@O
E step:

Assign data points to nearest clusters.

M step: 0® © %

Recalculate cluster centers.

Repeat... until convergence.



Clustering: K-Means clustering algorithm

Randomly Initialize cluster centers
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Assign data points to nearest clusters.
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Recalculate cluster centers. ®

Repeat... until convergence.



Classification: random forest algorithm

« Create N bootstrap samples, which are training sets re-sampled with
replacement.

« Build a (randomized) decision tree on each bootstrap sample.

« Average the predictions made by the /N randomized decision trees
(averaging the predictions of multiple models is called ensemble)



Soft clustering and its application



What about assigning clusters “softly”?

Hard clustering assignment: Soft clustering assignment:
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Soft clustering: Gaussian mixture model

plz)y 1
73 f3(x;)
7 fi(x) + m fH(x) + 3 f3(x)

Formula for calculating the probability of point x;

assigned to the 3rd gaussian distribution, where f, is

the Gaussian pdf, 7 is the class specific weight.

Randomly Initialize Gaussian distribution parameters (u, 02).

E step:
Assign data points to each Gaussian distribution by probabilities.
M step:

Recalculate Gaussian distribution parameters (using weighted estimators).
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Repeat... until convergence. Weighted mean: X,



Application of Gaussian mixture model
Cell types identification in scRNA-Seg

Low-dimensional
scRNA-seq data , subspace
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* The dimensional reduction techniques are doing the “feature extraction” for clustering.



Batch effect correction in scRNA-Seq
Harmony

Original gene
expression matrix @ Celltype 1

Corrected matrix
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Dimensional reduced space Correction by shrinking data points

toward clustering centroids
(in a way grouped by batches)

Korsunsky, llya, et al. "Fast, sensitive and accurate integration of single-cell data with Harmony." Nature methods 16.12 (2019): 1289-1296.



Harmony
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Based on 10 datasets,
Harmony performed the
best in cell type
identification task over 14
batch effect correction
methods for scRNA-Seq.

Tran, Hoa Thi Nhu, et al. "A benchmark of batch-effect correction methods for single-cell RNA sequencing data." Genome biology 21 (2020): 1-32.



Differential expression analysis



log(count + 1)

Differential expression analysis

m samples (biological replicates) for each group

Replicate 2
Replicate 1 ~— \

Differential expression

——> p-value \

— p-value
*kk

Which genes are
significantly

— differentially
expressed across
the 2 groups?

— p-value /



Inference for differential expression
Challenges of data randomness

* Suppose we have 2 coins and we want to know if the
probability of getting heads is different for the 2 coins.

* We first collect a data of coin tosses as the following:

Head Tail

2/4 is different from 3/4, but is the
Coin 1 2 2 difference “significant” enough
against the randomness?

Coin 2 3 1

 After collecting more outcomes, what conclusion can we draw now?

Head Tall

Coin 1 236 175

Coin 2 187 314




p-value: overcoming randomness

Alternative hypothesis H1: Data Distribu.tion of the difference in '
Phead(coin1) # Phead(coin2) proportions under the null assumption
Head Tall : B :
Null hypothesis HO: : © 7] —
Phead(coin 1) = Phead(coin2) Coin1] 2 2 e i
Coin2| 3 1 * ;7
Test statistics is: I I H i i H o _
2/4 ) 3/4 _ 025 -1|.O -OI.5 OfO 015 1!0
. . p-value is:
Coin 1 Coin 2 Prob(-0.25 > Null dist > 0.25) = 0.715

* First, assume that there is no difference between 2 coins (null hypothesis).

* Then, calculate the probability of generating data as extreme or more
extreme than the observed data under the null assumption.

* The calculated probability is called a p-value, and it can be obtained by
either probabilistic modeling or simulation methods.

* If the p-value is sufficiently small (e.g. < 0.095), it indicates that the data
reject the null assumption of no difference.



Statistical Modeling: rethinking of data

Well understood
Process in
probabilistic world:

Data we want to
model in practice:

Head Tall
Coin 1 10 10000
Coin 2 25 15000

Can be used to
represent

d

Read count on

Read count on

region x other regions
NGS library
] 10 10000
NGS library o5 15000

2




Statistical Modeling: formulation

We could write it down in the statistical modeling terms:
count_1 ~ binomial( p = p;, N = total reads count in library 1)

count_2 ~ binomial( p = p,, N = total reads count in library 2)

Or equivalently:

count_1 ~ Poisson( 4 = p; X total reads count in library 1)

count_2 ~ Poisson( 4 = p, X total reads count in library 2)
Hy:p =py H :p #p,

e The hypothesis pair above can be evaluated by the exact test for binomial or
Poisson (c-test).

e This test can be used in DGEA of RNA-Seqg when there are no replicates
available.

* |t can also be used to determine the threshold for peak calling in CHIP-Seq
using a control sample.



1st challenge of p-value: multiple
hypothesis testing

Can Jelly Beans Cause Acne?

JELLY BEANS WE FOUND NO THAT SETTLES THAT.
CAUSE ACNE! LINK BETWEEN :
T HEAR ITS ONLY
SCIENTISTS ! JELLY BEANS D & CERTAN CoOR
INVESTIGATE! AE (P> 0.05) THAT CAUSES IT.
BUT WeRe \
wgcm SCIENTISTS! .
... FINE. l mmn:au::ﬂ
WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO WE FOUND NO
LINK GETWEEN LINK GETWEEN LINK BEIWEEN LINK GETWEEN LINK GETWEEN
PURPLE JELLY BROWN JELLY PNk JELLY BWE Jeuy TEAL JELLY
BEANS AND ACNE BEANS AND ALNE BEANS AND ANE BEANS AND ANE BEANS AND ACNE
(P>0.05). (P>0.05) (P>0.05), (P>0.05). (P>0.05).
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g COINCIDENCE! ““Sripnrsre..
_ T =
WE FOUND NO WE FOUND NO WE FOUND NO WE. FOUND NO WE. FOUND NO
LINK GETWEEN LINK BETWEEN LINK BEIWEEN LINK GETWEEN LINK BETWEEN
SALMON JELLY RED JeELy TURGUOISE JELLY MAGENTA JELLY YEWOW JEuy
BEANS AND ACNE BEANS AND ANE BEANS AND ANNE BEANS AND ANE BEANS AND ACNE
(P>005). (P>0.05). (P>0.05), (P>005). (P>005).
/ / / / /




Solution for the 1st challenge
Adjusted p-values for multiple hypothesis testing

 |n differential gene expression analysis, multiple
p-values are calculated over 20000 genes,
therefore multiple hypothesis correction is
necessary.

, Retain HO Reject HO
e Two metrics are often used: .

1. Family wised error rate (FWER) controlled by HO True a b a+b =m0
Bonferroni correction.
H1 True C d c+d = m1
2. False discover rate (FDR) controlled by
Benjamini-Hochberg correction. 2+ = N0 | bad = nq | @P+c+d
=m
* Bonferroni corrected p-value is defined by
m X p-value, where m is the total number of FWER := P(b>0|m)
tests conducted (e.g. the # of genes in FDR := b/n1

differential expression analysis).

 Filtering Bonferroni corrected p-value at 0.05
ensures FWER < 0.05.



2nd challenge of p-value: we may fail to
define the randomness accurately

0.02 1

model_fit
— NB

— Poisson

0.00 1
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Read counts on Gene LSR1 over biological replicates

* |n practice, the distribution of read counts across biological replicates follows a
negative binomial (NB) distribution rather than a Poisson distribution.

 Many classic statistical models (e.g. Poisson/binomial models) fail to account for
the over-dispersed nature of genomic count data.



Solution for the 2nd challenge
Selecting suitable statistical distribution for your data
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e It is important to use a statistical model that specify the data, i.e. the model used
should be able to generate the observed data under some parameterization.

* This can be done by examining the goodness of fits of different distribution families on
the data; statistical test should be constructed using the best fitting distribution family.

Hashimoto, Tatsunori B., Matthew D. Edwards, and David K. Gifford. "Universal count correction for high-throughput sequencing."
PLoS computational biology 10.3 (2014): e1003494..




Summary of the commonly used
statistical tests iIn genomics

D'S}gﬁﬁyon Data type Support Statistical test Application in genomics
Binomial or Binary or Fisher’'s exact test; -(geesrtgogezt ;(nfigﬁ;g:gea?g t;t;!e;
multinomial categorical 10,1,-,m} Chi-squared test ysIs,
GWAS
: : _ t-test Differential expression analysis
Gaussian Continuous [—00, + 0] (limma) for micro-array data
| e s el (e Differential analysis for NGS
Poisson Count 10,1,++, + 00} Exact binomial test without biological replicates
(e.g. peak calling)
Negative NB test Differential analysis for NGS
A Count  {0,1,---, + oo} ith biological repli
binomial (DESeq2, edgeR) with biological replicates
(e.g. DGEA for RNA-Seq)




3rd challenge: limited sample size
estimating gene variances

Red: fitted regression curve, in which
Uncertainty of variance estimation the fitted values will be used for differential testing

drops with sample size Black: estimated gene dispersions on limited samples

var(x) =1
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* Tests integrating multiple replicates require the estimation of dispersion parameters (e.g.
Gaussian 6 and NB over-dispersion parameter).

5 10 15
Sample size (n)

* Many experiments only have 2 or 3 replicates, this is too few for accurate dispersion
parameter estimation.

* One solution is to use a smooth curve to predict gene dispersions from gene means,
which shares information between all genes. This approach is commonly used by DGEA
packages such as Limma, EdgeR, and DESeq?2.

Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." Nature Precedings (2010): 1-1.
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