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Introduction to batch effect



Batch effect?

Unexpected sources of variations between groups
of experiments

o 0 Alleles

O External Factors O Genetics / O Technical Factors
(e.X. environment) Epigenetics



Does batch effect only happen in genomics?
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Speed of light estimates with “Confidence Intervals” (1900-1960)

Youden W: Enduring values. Technometrics 1972, 14(1):1-11.



Influence of batch factors in gene
expression analysis (l)

L 1
Color: Environments Color: Processing Year
Idaghdour et al. 2008 Cheung et al. 2008

Hierarchical clustering dendrograms over gene expression samples.



Influence of batch factors in gene
expression analysis (ll)
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1000 Genomes Project Consortium. (2015). A global reference for
human genetic variation. Nature, 526(7571), 68.



False discoveries due to confounding

13 = 3
10 = 2 I [
2 =
B ® =0
C =
O o) =
o o N
5 e R R XX E R SEERduEdb
o JU e g = :ﬂ“ﬂ{
| | | | | | | | | | | |
00 02 04 06 08 1.0 00 02 04 06 08 1.0
P values P values
P values distribution for tests of differential P values distribution after controlling the year
expression between CEU and ASN samples in which the microarrays were processed
nature genetics

Published: 07 January 2007

Common genetic variants account for differencesin
gene expression among ethnic groups



Numbers of samples
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Other problematic conclusions made from
big journal articles

Proteomics test can predict ovarian cancer from serum (Lancet)

50% of genes are differentially expressed between ASN and CEU
blood (Nature Genetics)

SNPs associated with longevity (Science)

Species explain more variability than tissue in gene expression
(Genomics, PNAS)

Age Related Methylation Profiles (Genome Research and others)

Some proportion of single cell RNA-Seq results
(Nature and others)



Batch effect adjustment by
feature specific size factors



How to computationally adjust batch effect

given the count matrix?
Dividing by more feature specific size factors

Sample 1 Sample 2

Gene A 16/(s_j*I_i*gc_i*M_i*...)| 5/(s_j*l_i*gc_ij*M_i*...)

Gene B 13/(s_j*L_i*gc_ij*M_i*...)| 3/(s_j*l_i*gc_ii*M_i*...)

Gene C 7/(s_j*_i*gc_i*M_i*...) | O/(s_j*_i*gc_ii*M_i*...)

GeneD  |28/(s_j*l_i*gc ii*M_i*...)|12/(s_j*l_i*gc_ij*M_i*...)

Multiplicative
model behind, K;;

is the read count Kl] — Hl] X Sj X li Xf]‘(gcl) X Mi X ...

for the i th gene

and j th sample. . I
J o sz : the true gene expression o J{gc;): GC content bias.

level (target of estimation).

© s; : sequencing depth. o M;: read mappability.

© [.: gene length.



Read genome mappability

Fast Computation of Genome Mappability
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Figure 3. Visualization of mappability on the UCSC browser [7]: the example of the human TK1 gene. Six mappability tracks (green) are
shown here corresponding to k-mer sizes 24, 36, 50, 75 and 100 bp (from top to bottom of the figure). Regions with low mappability score have high
frequencies, and conversely. This example illustrates that the uniqueness of the TK1 locus (especially within the introns) could be inversely correlated
with the presence of some repetitive elements as identified by RepeatMasker [37].

doi:10.1371/journal.pone.0030377.g003

* The idea is that some regions along the genome are harder to be
(unigquely) mapped due to the presence of repetitive sequences.

e One can use specialized tool to estimate mappability across any
genomes: https://evodify.com/gem-mappability/



Sequencing artifacts
The artifact generating mechanism of RNA-Seq

Fragment sequence bias Read start bias

density
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« Among them, the fragment GC content bias is the leading component of

technical variation.

Love, M. |., Hogenesch, J. B., & Irizarry, R. A. (2016). Modeling of RNA-seq fragment sequence bias
reduces systematic errors in transcript abundance estimation. Nature biotechnology, 34(12), 1287.



Correction for GC content bias



Review on linear regression

Fitted conditional
A expectation function f

from data, where

J) = E[Y]X = x]

Y Expected Y at X=x
Dependent variable B S T :
can be log fragment :
coverage rate.

X

X

Covariate can be GC content of gene features.

* The purpose of linear regression is to fit the joint relationship between response
variable (Y) and covariates (X).

* The output of linear regression fit is a mathematical function of conditional
expectation, which can return the expected value of Y given a specific value of X.



Feature expansion: smoothing splines

I||UStratI0n for a CUb|C Sp“ne Polynom|a| regressions

f(x) / Jo» - - - » J5 are fitted on 6
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« Splines enables fitting most smooth non-linear patter between y and continuous x.

* The cubic splines algorithm works as a “piecewise polynomial”:

© Cut the range of x into several intervals, the boundaries of the intervals are called
knots.

© For each interval /, fit a polynomial curve with degree=3 for x € I, and fit linear
trends for x & 1.

© The final curve is obtained by the sum of f; for all intervals together with the basic

linear fit of B, + f,x.

#Fitting glm with natural cubic splines of 5 knots
glm(y~splines::ns(x,df=5), data = model matrix, family = “Poisson”)



Estimate GC content bias (f(gc.) ) with

smooth linear regression

Poisson GLM Fits (]?j) with cubic splines

log fragment rate
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Love, M. ., Hogenesch, J. B., & Irizarry, R. A. (2016). Modeling of RNA-seq fragment sequence bias

reduces systematic errors in transcript abundance estimation. Nature biotechnology, 34(12), 1287.



Combat and SVA



Batch effect factors may beyond
accountable technical artifacts

Confounding batch factors:

. Environment 1 i Ethnicity 1

Environment 2 . Ethnicity 2

Column data
(Experimental design)

Experimental design factor:

. WT group

Treatment

Expression assay

<4+— Genes

<4+— Samples —»

* Batch effects in genomics can be caused by both technical factors and
untracked biological factors.

* Technical factors are easier to adjust after understanding the generation
mechanism of technical artifacts.

* Untracked biological factors, such as age, ethnicity, environmental factors,
and epigenetic differences, can confound with the factor of experimental
design.

* Adjusting for bio-based confounding factors is harder since they affect the
true biological signals.



Linear regression representation

Gene i’s Experimental Batch factors i.i.d Gaussian

Samples  expression Intercept Treatments (e.g. date, age) noise
Treated rep 1 | 28.23 1] 1 1] 0 18 €
Treatedrep2 | 15.36 1 1 0 1 20 €

a b €

Treatedrep 3 | 22.53 _ 1 o+ 1 0 1 n 1 18 1 + 3
Controlrep1 | 10.11 1 0 1 dy 0 30 b2 €4
Control rep 2 8.73 1 0O O O 10 €5
Controlrep 3 | 3.49 i _1_ _O O_ _1 60_ _€6_

' v

Matrix format: y = u + Treatment o + Batch f + e

y: a vector of normalized* gene expression levels for gene 1.

Treatment : design matrix for experimental treatments (e.g. treatment v.s. control).
a: an unknown vector containing effects of experimental treatments.

Batch : Design matrix for confounding batch factors.

[ effects of batches.

*For NGS data, minimal normalizations should be:
e: a vector for random Gaussian error. sequencing depth > log > row z-score.



Supervised batch effect modeling: combat

Observed batch factors

Column

data Combat like approach (Regression only):

y = u + Treatment a + Batch f + e
j}COI’l’CCt — y _ BatCh ﬁ

_ Fit linear regression
Expression assay \ first to estimate /3
Subtract the batch effect term

from the gene expression vector to
get the corrected gene expression

<4+— Genes

<4—— Samples ——»

- Combat is a method used to correct for batch effects when we know the key
confounding factors that are causing the batch effects.

- It works by fitting a multiple linear regression model to the gene expression data,
where both the known confounding factors and the experimental design factors are
used as covariates in the model.

« The model then estimates the effect of each covariate on the gene expression data
and removes the unwanted variation due to the known confounding factors.



Unsupervised batch effect modeling: SVA

Missing batch factors

Column r | |
SVA like approach (1. PCA, 2. Regression):

data

Step1:
Use PCA / SVA to estimate Batch from the
entire gene expression matrix

Expression assay

Step2:
y = u + Treatment o + Batch p+e

j}COI’I’CCt — y B atCh ﬂ

<4+— Genes

<4—— Samples ——»

- Unsupervised methods are used when batch factors are unknown and cannot be
directly accounted for.

- These methods estimate the "latent" batch factors using techniques like PCA or other
factor analysis algorithms.

- Surrogate Variable Analysis (SVA) is a sophisticated form of PCA that can estimate
batch effect factors while also isolating the influence of experimental design factors.



Control experiment



How to understand artifacts under a big picture?

The estimates of biological
Corrected P knowledge.

Data

f_l() is a correction, which is

—1 / implemented by a bioinformatics tool to
f ( ) remove the artifact from raw data.

X Raw — Raw experimental outcomes.

Data

f0 is the Artifact associated with P f( )

the instrument, which is the
experimental system, including
the model organisms, cell lines,

design, & equipments. 0 Object e

The biological knowledge of
interest.




How can we know f() exactly?
Control experiments

mRNA IVT RNA
Control
Object
‘\é\‘ -
&~ N

lIP lIP

? m°A False positives

* A strong approach to identify artifact is to run a control experiment.

« When object is known, we can learn artifact f() by observing the deviations
in data.



Calibration of antibody unspecific binding
by control experiment

Fragment enrichment

mRNA
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Zhang Z, Chen T, Chen H X, et al. Systematic calibration of epitranscriptomic maps using a synthetic
modification-free RNA library[J]. Nature Methods, 2021, 18(10): 1213-1222.



Spike-in control in NGS

Sample DNA/RNA:

Spike-in control }
(known abundance/# of copies):
U
_— NGS adapters
Library preparation: — — e— —

y
Sequencing: d@
" 4 &

Bioinformatics analysis
(mapping & normalization):

Sample reads gBlocks reads

Uses:
Confirm sample
|dentify contamination
In-process control



Using spike-in control to estimate
exact sequencing depth

Region A RegionB
True relative abundance Experiment sample: 3 3
of DNA regions Control sample: 2 2
Experiment sample: — S
Raw data before '
normalization _ — E—
Contr0| Sample' | |
] ]
Normalization to total reads Experiment sample: — —
being the same for each
sample (like RPKM) Control sample: e —
True
abundance
. . . _ 3 I — recovered
Normallzatlon to spike Experiment sample: X —  e—— ——
in being the same for 2 — —
each Sample Control sample: 3 — E—
X—= | |

 When the same degree of change happens everywhere on the genome, normalizing total
sequencing reads to the same number hides the change, whereas normalizing spike-in
reads to the same number reveals the global change of read density.

Chen, Kaifu, et al. "The overlooked fact: fundamental need for spike-in control for virtually all genome-wide
analyses." Molecular and cellular biology 36.5 (2016): 662-667.



Most NGS experiments don’t have control
Correction by trial and error

When control experiments Performance

are not available, we can

propose different _1

\I/]

hypotheses (g, /1, [ ..

the artifact f, and test

which one perform best in a

downstream analysis.

JC)

* When lacking control, the optimal correction pipeline is often discovered by trial and error.

., True theta and f are often not identifiable in such cases, as different combinations of theta and f can generate
the same data X.

* As a result, the optimal correction methods are often different by different downstream
applications, since they have different tolerances to different types of errors.



GC content bias
correction is
effective in copy
number variation
detection (a DNA-
Seq application)
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Figure 3. Predicted values of f(GC) for four samples from the 1000
Genomes Project data set. Most patterns agree with previous observa-
tions that read depth has a unimodal relationship with GC content. How-
ever, dual modality is also observed. Furthermore, the function changes in
shape and not just by a scaling factor.
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Nucleic Acids Research, 2015, Vol. 43, No. 6 e39
doi: 10.1093/nar/gkul363

1. In practice, choosing the right normalization and batch effect removal methods
often lead to the most significant performance boost among all steps.

2. The normalization procedures introduced in Lec 5 and Lec 6 are generally useful
for most types of genomic assays.

E.g. DNA-Seq, RNA-Seq, scRNA-Seq, metagenomic sequencing, and CHIP-Seq
can all benefit from GC bias correction and quantile normalization.
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