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• Introduction to batch effect
• Batch effect adjustment by feature

specific size factors
• Correction for GC content bias
• Combat and SVA
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Introduction to batch effect



Batch effect? 
Unexpected sources of variations between groups 
of experiments

External Factors 
(e.x. environment)

Genetics /  
    Epigenetics 

Technical Factors 



• Speed of light estimates with “Confidence Intervals” (1900-1960)

Youden W: Enduring values. Technometrics 1972, 14(1):1-11. 

Does batch effect only happen in genomics?



Influence of batch factors in gene 
expression analysis (I)

Idaghdour et al. 2008 Cheung et al. 2008

Color: Environments Color: Processing Year

Hierarchical clustering dendrograms over gene expression samples.



Influence of batch factors in gene 
expression analysis (II)

1000 Genomes Project Consortium. (2015). A global reference for 
human genetic variation. Nature, 526(7571), 68.

sorted by the dates 
which the samples 
are generated



False discoveries due to confounding

P values distribution for tests of differential 
expression between CEU and ASN samples

P values distribution after controlling the year 
in which the microarrays were processed 



The confounded experimental design
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Other problematic conclusions made from 
big journal articles

• Proteomics test can predict ovarian cancer from serum (Lancet)

• 50% of genes are differentially expressed between ASN and CEU
blood (Nature Genetics)

• SNPs associated with longevity (Science)

• Species explain more variability than tissue in gene expression
(Genomics, PNAS)

• Age Related Methylation Profiles (Genome Research and others)

• Some proportion of single cell RNA-Seq results
(Nature and others)



Batch effect adjustment by 
feature specific size factors



How to computationally adjust batch effect 
given the count matrix?
Dividing by more feature specific size factors

Kij = θij × sj × li × fj(gci) × Mi × ... 
 : the true gene expression 

level (target of estimation).

 : sequencing depth. 
 : gene length.

θij

sj
li

Sample 1 Sample 2

Gene A 16/(s_j*l_i*gc_ij*M_i*…) 5/(s_j*l_i*gc_ij*M_i*…)

Gene B 13/(s_j*l_i*gc_ij*M_i*…) 3/(s_j*l_i*gc_ij*M_i*…)

Gene C 7/(s_j*l_i*gc_ij*M_i*…) 0/(s_j*l_i*gc_ij*M_i*…)

Gene D 28/(s_j*l_i*gc_ij*M_i*…) 12/(s_j*l_i*gc_ij*M_i*…)Multiplicative 
model behind, 

is the read count 
for the  th gene 
and  th sample.

Kij

i
j

: GC content bias.  

! read mappability.


fj(gci)

Mi



Read genome mappability

• The idea is that some regions along the genome are harder to be
(uniquely) mapped due to the presence of repetitive sequences.

• One can use specialized tool to estimate mappability across any
genomes: https://evodify.com/gem-mappability/



Sequencing artifacts

Love, M. I., Hogenesch, J. B., & Irizarry, R. A. (2016). Modeling of RNA-seq fragment sequence bias 
reduces systematic errors in transcript abundance estimation. Nature biotechnology, 34(12), 1287.

The artifact generating mechanism of RNA-Seq

• Among them, the fragment GC content bias is the leading component of
technical variation.



Correction for GC content bias



Review on linear regression

X

Y
Dependent variable 
can be log fragment 
coverage rate.

Covariate can be GC content of gene features.

• The purpose of linear regression is to fit the joint relationship between response
variable ( ) and covariates ( ).

• The output of linear regression fit is a mathematical function of conditional
expectation, which can return the expected value of  given a specific value of .

Y X

Y X

Fitted conditional 
expectation function  
from data, where

f

f (x) = "[Y |X = x]

Expected Y at X=x

x



Feature expansion: smoothing splines
illustration for a cubic spline

•
• The cubic splines algorithm works as a “piecewise polynomial”:

Cut the range of  into several intervals, the boundaries of the intervals are called 
knots. 

For each interval , fit a polynomial curve with degree=3 for , and fit linear 
trends for . 

The final curve is obtained by the sum of  for all intervals together with the basic 
linear fit of .

Splines enables fitting most smooth non-linear patter between y HUK�JVU[PU\V\Z x.

x

I x ∈ I
x ∉ I

fI
β0 + β1x

Polynomial regressions 
 are fitted on 6 

intervals defined by the knots 
.

f0, . . . , f5

x1, . . . , x6

#Fitting glm with natural cubic splines of 5 knots
glm(y~splines::ns(x,df=5), data = model_matrix, family = “Poisson”)



Estimate GC content bias (  ) with 
smooth linear regression

fj(gci)

Poisson GLM Fits ( ) with cubic splineŝfj
Fragment coverage predicted 

by different GLM models

Love, M. I., Hogenesch, J. B., & Irizarry, R. A. (2016). Modeling of RNA-seq fragment sequence bias 
reduces systematic errors in transcript abundance estimation. Nature biotechnology, 34(12), 1287.



Combat and SVA



Batch effect factors may beyond 
accountable technical artifacts

• )H[JO�LMMLJ[Z�PU�NLUVTPJZ�JHU�IL�JH\ZLK�I`�IV[O�[LJOUPJHS�MHJ[VYZ�HUK
\U[YHJRLK�IPVSVNPJHS�MHJ[VYZ�

• ;LJOUPJHS�MHJ[VYZ�HYL�LHZPLY�[V�HKQ\Z[�HM[LY�\UKLYZ[HUKPUN�[OL�NLULYH[PVU
TLJOHUPZT�VM�[LJOUPJHS�HY[PMHJ[Z�

• <U[YHJRLK�IPVSVNPJHS�MHJ[VYZ��Z\JO�HZ�HNL��L[OUPJP[`��LU]PYVUTLU[HS�MHJ[VYZ�
HUK�LWPNLUL[PJ�KPMMLYLUJLZ��JHU�JVUMV\UK�^P[O�[OL�MHJ[VY�VM�L_WLYPTLU[HS
KLZPNU�

• (KQ\Z[PUN�MVY�IPV�IHZLK�JVUMV\UKPUN�MHJ[VYZ�PZ�OHYKLY�ZPUJL�[OL`�HMMLJ[�[OL
[Y\L�IPVSVNPJHS�ZPNUHSZ�
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(Experimental design)

WT group

Treatment

Environment 1

Environment 2

Confounding batch factors:

Experimental design factor: 

Ethnicity 1

Ethnicity 2



Linear regression representation

Samples

Treated rep 1
Treated rep 2
Treated rep 3

Control rep 1

Control rep 2

Control rep 3

28.23
15.36
22.53
10.11
8.73
3.49

=

1
1
1
1
1
1

μ +

1 1
1 0
1 0
0 1
0 0
0 0

[a1
a2] +

0 18
1 20
1 18
0 30
0 10
1 60

[b1
b2] +

ϵ1
ϵ2
ϵ3
ϵ4
ϵ5
ϵ6

y = μ + Treatment α + Batch β + e

Gene i’s 
expression Intercept

Experimental 
Treatments

Batch factors 
(e.g. date, age)

i.i.d Gaussian
noise

Matrix format:

 : a vector of normalized* gene expression levels for gene  .

 design matrix for experimental treatments  (e.g. treatment v.s. control).


: an unknown vector containing effects of experimental treatments.

 Design matrix for confounding batch factors.


: effects of batches.

: a vector for random Gaussian error.

y i
Treatment :
α
Batch :
β
e

*For NGS data, minimal normalizations should be:
sequencing depth > log > row z-score.



Supervised batch effect modeling: combat

 *VTIH[�PZ�H�TL[OVK�\ZLK�[V�JVYYLJ[�MVY�IH[JO�LMMLJ[Z�^OLU�^L�RUV^�[OL�RL`
JVUMV\UKPUN�MHJ[VYZ�[OH[�HYL�JH\ZPUN�[OL�IH[JO�LMMLJ[Z�
 0[�^VYRZ�I`�MP[[PUN�H�T\S[PWSL�SPULHY�YLNYLZZPVU�TVKLS�[V�[OL�NLUL�L_WYLZZPVU�KH[H�
^OLYL�IV[O�[OL�RUV^U�JVUMV\UKPUN�MHJ[VYZ�HUK�[OL�L_WLYPTLU[HS�KLZPNU�MHJ[VYZ�HYL
\ZLK�HZ�JV]HYPH[LZ�PU�[OL�TVKLS�
 ;OL�TVKLS�[OLU�LZ[PTH[LZ�[OL�LMMLJ[�VM�LHJO�JV]HYPH[L�VU�[OL�NLUL�L_WYLZZPVU�KH[H
HUK�YLTV]LZ�[OL�\U^HU[LK�]HYPH[PVU�K\L�[V�[OL�RUV^U�JVUMV\UKPUN�MHJ[VYZ�

Expression assay

Samples

G
en

es
Observed batch factors

Column 
data

Combat like approach (Regression only):
y = μ + Treatment α + Batch β + e

yĉorrect = y − Batch β ̂

Subtract the batch effect term 
from the gene expression vector to 
get the corrected gene expression

Fit linear regression 
first to estimate β ̂



Unsupervised batch effect modeling: SVA

 <UZ\WLY]PZLK�TL[OVKZ�HYL�\ZLK�^OLU�IH[JO�MHJ[VYZ�HYL�\URUV^U�HUK�JHUUV[�IL
KPYLJ[S`�HJJV\U[LK�MVY�
 ;OLZL�TL[OVKZ�LZ[PTH[L�[OL�	SH[LU[	�IH[JO�MHJ[VYZ�\ZPUN�[LJOUPX\LZ�SPRL�7*(�VY�V[OLY
MHJ[VY�HUHS`ZPZ�HSNVYP[OTZ�

 :\YYVNH[L�=HYPHISL�(UHS`ZPZ��:=(��PZ�H�ZVWOPZ[PJH[LK�MVYT�VM�7*(�[OH[�JHU�LZ[PTH[L
IH[JO�LMMLJ[�MHJ[VYZ�^OPSL�HSZV�PZVSH[PUN�[OL�PUMS\LUJL�VM�L_WLYPTLU[HS�KLZPNU�MHJ[VYZ�

Expression assay

Samples

G
en

es
Missing batch factors

Column 
data

 Batch from the 
Step1:

Use PCA / SVA to estimate
entire gene expression matrix


Step2:

y = μ + Treatment α + Batĉh β + e

yĉorrect = y − Batĉh β ̂

SVA like approach (1. PCA, 2. Regression):



Control experiment



How to \UKLYZ[HUK artifacts under a big picture?

Object
The biological knowledge of 
interest.

Corrected 
Data

Raw 
Data

f( )

f −1( )

The estimates of biological 
knowledge.

Raw experimental outcomes.

 is the Artifact associated with 
the instrument, which is the 
experimental system, including 
the model organisms, cell lines, 
design, & equipments. 

f()

 is a correction, which is 
implemented by a bioinformatics tool to 
remove the artifact from raw data.

f −1()

θ

̂θ

X



How can we know  exactly?f()
Control experiments

Object

Data

f( )

Control 
Object

f( )

Data

• A strong approach to identify artifact is to run a control experiment.

• When object is known, we can learn artifact  by observing the deviations
in data.

f()



Calibration of antibody unspecific binding 
by control experiment

Zhang Z, Chen T, Chen H X, et al. Systematic calibration of epitranscriptomic maps using a synthetic 
modification-free RNA library[J]. Nature Methods, 2021, 18(10): 1213-1222.



Spike-in control in NGS

Sample DNA/RNA:

Spike-in control
(known abundance/# of copies):

Library preparation:

Sequencing:

Bioinformatics analysis       
(mapping & normalization):



Using spike-in control to estimate 
exact sequencing depth

True relative abundance 
of DNA regions

Raw data before 
normalization

Normalization to total reads 
being the same for each 
sample (like RPKM)

Normalization to spike-
in being the same for 
each sample

Experiment sample:

Control sample:

Region A RegionB

3 3
2 2

Experiment sample:

Control sample:

Experiment sample:

Control sample:

Experiment sample:

Control sample:

× 3
2

× 3
2

True 
abundance 
recovered

• When the same degree of change happens everywhere on the genome, normalizing total
sequencing reads to the same number hides the change, whereas normalizing spike-in
reads to the same number reveals the global change of read density.

Chen, Kaifu, et al. "The overlooked fact: fundamental need for spike-in control for virtually all genome-wide 
analyses." Molecular and cellular biology 36.5 (2016): 662-667.



Most NGS experiments don’t have control   
Correction by trial and error

Object

Data

f( )

When control experiments 

are not available, we can 

propose different 

hypotheses ( ) on 

the artifact , and test 

which one perform best in a 

downstream analysis.

g, h, l . . .
f

g−1

h−1

l−1

Performance

• When lacking control, the optimal correction pipeline is often discovered by trial and error.

•
• As a result, the optimal correction methods are often different by different downstream

applications, since they have different tolerances to different types of errors.

True theta and f are often not identifiable in such cases, as different combinations of theta and f can generate 
the same data X.

f( )



Take home messages

1. In practice, choosing the right normalization and batch effect removal methods
often lead to the most significant performance boost among all steps.

2. The normalization procedures introduced in Lec 5 and Lec 6 are generally useful
for most types of genomic assays.

E.g. DNA-Seq, RNA-Seq, scRNA-Seq, metagenomic sequencing, and CHIP-Seq
can all benefit from GC bias correction and quantile normalization.

GC content bias 
correction is 
effective in copy 
number variation 
detection (a DNA-
Seq application)
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