

BIO214 Lecture 3

Bioinformatics-II

Read Genome Mapping

Zhen Wei; 2023-Feb-14

Outline

- Pre-mapping quality control
- Genome aligner
- Splice-awared genome aligner
- Alignment-free method
- Performances of different tools

Pre-mapping quality control

Reads quality control: what could go wrong?

- In addition to base calling errors, NGS library preparation can introduce technical biases from multiple sources.
- These biases can lead to systematic error and batch effect in NGS data.

Fragment GC content bias

- PCR amplification of DNA/cDNA fragments introduces bias in 2nd generation sequencing-based techniques (e.g. DNA-Seq, RNA-Seq, Chip-Seq).
- This is typically the most severe type of technical bias for illumina sequencing.

Fragment sequence bias (PCR amplification)

Adaptor contamination

- Illumina sequencing uses adaptors, which are repeated sequences attached to both ends of DNA/cDNA fragments.
- Adaptors facilitate hybridization with probes (on the flow cell) and primers (in bridge PCR).
- Short fragments can lead to adaptor contamination at the 3' end of reads, especially when the read length exceeds the insert length.

How to detect read quality issues?

Read QC software

- fastqc is a command line tool on Linux/Unix system to generate quality report on fastq files.
- The output of fastqc includes an html report, which contains multiple QC statistics.
- It can be used on linux bash with a single line command.

Summary

•	Basic Statistics	
•	Per base sequence qual	<u>ity</u>

Per tile sequence quality

• Per sequence quality scores

Per base sequence content

• Per sequence GC content

Per base N content

Usequence Length Distribution

• USequence Duplication Levels

Overrepresented sequences

Adapter Content

Wmer Content

Fastq format

Fastq is a text-based format. It represents each raw read with 4 lines:

- 1. A sequence identifier with information about the sequencing run and the cluster.
- 2. The sequence or base calls in the order of 5'-3'; can be A, C, T, G and N.
- 3. A separator of a plus (+) sign.
- 4. Characters encoded base call quality scores (**Phred scores**). The Phred scores or Q scores have the following definition:

$$Q = -10 \times log_{10}(e)$$

where e is the estimated probability of the base call being wrong.

Per base sequence quality

- The y-axis on the graph shows the Phred scores.
- The background of the graph divides the y axis into very good quality calls (green), calls of reasonable quality (orange), and calls of poor quality (red).
- Warning will be issued if the lower quartile for any bases fall below the red region.

Adaptor content

Adapter Content

- The plot shows a cumulative percentage count of the proportion of your library which has seen each of the adapter sequences at each position.
- This module will issue a warning if any sequence is presented in more than 5% of all reads.

GC content distribution

- The graph displayed a histogram of GC content over all reads.
- Warning is issued when observed read GC content distribution (red) is significantly deviant from the expected normal distribution (blue).

How to fix the diagnosed issues?

Trimming software

- The adaptor sequences and low quality ends can be removed via trimming.
- **Trim Galore** (a popular trimming software) can automatically scan & remove adaptors and low quality base calls from the read 3'end.
- Normalization methods are required to address other types of technical biases, such as GC content biases, in downstream analysis.

Before quality trimming

After quality trimming

Genome aligners

How to align short reads to genome efficiently?

Bowtie2

- Bowtie 2 extracts seed substrings from the read and its reverse complement.
- Seeds are aligned to the reference genome with the help of the genome index.
- The precise locations of seeds on the reference genome are calculated from the index.
- Seeds are extended into full alignments on the genome.

Langmead, Ben, and Steven L. Salzberg. "Fast gapped-read alignment with Bowtie 2." Nature methods 9.4 (2012): 357-359.

How to account splicing in RNA-Seq reads?

Tophat2 pipeline

Tophat2 alignment pipeline:

- in step 1, reads are aligned against the transcriptome (defined in GTF).
- In step 2, unmapped reads from the previous step are aligned against the genome.
- In step 3, reads are split into smaller segments, and these segments are aligned to the genome using spliced alignment strategy.
- The alignment tool used by Tophat2 is Bowtie2.

Alignment-free method

Is it possible to map reads to transcripts without (precise) alignment?

Alignment:

	Transcript 1	Transcript 2	Transcript 3
Read 1	[57, 107]	Not align	Not align
Read 2	Not align	[12, 62]	Not align
Read 3	Not align	Not align	[134,184]
Read 4	[66, 116]	Not align	[85, 135]

Read is aligned at the specific range of [start, end]

Alignment-free:

	Transcript 1	Transcript 2	Transcript 3
Read 1	1	0	0
Read 2	0	1	0
Read 3	0	0	1
Read 4	1	0	1

1: compatible

0: incompatible

• **Motivation**: Knowing the compatibility between reads and transcripts is enough to measure transcript expression levels, without needing to know the exact location of the reads on the transcripts.

Pseudo-alignment with TDB graph Kallisto

- The input for Kallisto includes a reference transcriptome and RNA-Seq reads.
- Kallisto constructs a transcriptome de Bruijn graph (T-DBG) using k-mers as nodes.
- The T-DBG allows for the efficient identification of compatibility relationships between reads and transcripts, without requiring precise read mapping to the transcripts.
- Kallisto is able to quantify transcript expression levels based on these compatibility relationships.

Bray, Nicolas L., et al. "Near-optimal probabilistic RNA-seq quantification." Nature biotechnology 34.5 (2016): 525-527.

Performances of different tools

How different tools compared to eachother in accuracy?

BEveraert, Celine, et al.
"Benchmarking of RNAsequencing analysis workflows
using whole-transcriptome RTqPCR expression data."
Scientific reports 7.1 (2017):
1559.

Figure 3. High fold change correlation between RT-qPCR and RNA-seq data for each workflow. The correlation of the fold changes was calculated by the Pearson correlation coefficient. Results are based on RNA-seq data from dataset 1.

 When RT-qPCR is used as a technically independent validation, all types of gene expression quantification workflows can explain approximately 93% of the variances (R²).

Running time of different methods

Aligner	Splice-awared	Pesudo-alignment	Speed	Memory demand
bowtie2	No	No	Fast	Small
STAR	Yes	No	Fast	Large
Tophat2	Yes	No	Slow	Large
Hisat2	Yes	No	Fast	Small
Kallisto	Yes	Yes	Altra fast	Very small
Salmon	Yes	Yes	Altra fast	Very small

- For DNA-Seq based assays, bowtie2 is recommended.
- For RNA-Seq based assays, *Hisat2* or *Tophat2* is recommended.

Why not only use alignment-free methods?

- Alignment-free and traditional alignment-based quantification methods have similar performance for common gene targets such as protein-coding genes.
- However, alignment-free methods have limitations in analyzing and quantifying lowly-expressed genes and small RNAs, particularly when these small RNAs have biological variations.
- Therefore, sliding windows in peak calling cannot be reliably quantified using alignment-free methods due to their small feature (bin) size.

RESEARCH ARTICLE

Open Access

CrossMark

Limitations of alignment-free tools in total RNA-seq quantification