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Pre-mapping quality control



Reads quality control: what could go wrong?

Introduced in reverse
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* In addition to base calling errors, NGS library preparation can introduce
technical biases from multiple sources.

* These biases can lead to systematic error and batch effect in NGS data.



Fragment GC content bias

GC bias can cause errors in gene
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* This is typically the most severe type of technical bias for
Illumina sequencing.
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Adaptor contamination
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lllumina sequencing uses adaptors, which are
repeated sequences attached to both ends of
DNA/cDNA fragments.

Adaptors facilitate hybridization with probes
(on the flow cell) and primers (in bridge PCR).

Short fragments can lead to adaptor
contamination at the 3' end of reads,
especially when the read length exceeds the
insert length.



How to detect read quality issues?
Read QC software

» fastqc is a command line tool on Linux/Unix system to generate quality report on

fastq files.

* The output of fastgc includes an html report, which contains multiple QC statistics.

|t can be used on linux bash with a single line command.
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Fastq format

Label

Sequence
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Q scores (as ASCII chars)

Base=T,0=""=23

Fastq is a text-based format. It represents each raw read with 4 lines:

1. A sequence identifier with information about the sequencing run and the cluster.
. The sequence or base calls in the order of 5’-3’; can be A, C, T, G and N.

2
3. A separator of a plus (+) sign.
4

. Characters encoded base call quality scores (Phred scores). The Phred scores or

( scores have the following definition:

Q = — 10X log;(e)
where e is the estimated probability of the base call being wrong.



Per base sequence quality

Quality scores across all bases (Illumina >v1.3 encoding)
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* The y-axis on the graph shows the Phred scores.

 The background of the graph divides the y axis into very good quality calls (green),
calls of reasonable quality (orange), and calls of poor quality (red).

« Warning will be issued if the lower quartile for any bases fall below the red region.



Adaptor content

@Adapter Content
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The plot shows a cumulative percentage count of the proportion of your library
which has seen each of the adapter sequences at each position.

This module will issue a warning if any sequence is presented in more than 5% of
all reads.



GC content distribution

GC distribution over all sequences

GC count per read
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* The graph displayed a histogram of GC content over all reads.

* Warning is issued when observed read GC content distribution (red) is significantly
deviant from the expected normal distribution (blue).



How to fix the diagnosed issues?
Trimming software

* The adaptor sequences and low quality ends can be removed via trimming.

* Trim Galore (a popular trimming software) can automatically scan & remove adaptors
and low quality base calls from the read 3’end.

* Normalization methods are required to address other types of technical biases, such
as GC content biases, in downstream analysis.
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Genome aligners



How to align short reads to genome efficiently?
Bowtie2
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How to account splicing in RNA-Seq reads?

Tophat2 pipeline

(1) Transcriptome alignment (optional)
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Genome biology 14.4 (2013): 1-13.

Tophat2 alignment pipeline:

* in step 1, reads are aligned
against the transcriptome
(defined in GTF).

* |n step 2, unmapped reads
from the previous step are
aligned against the
genome.

* In step 3, reads are split
Into smaller segments, and
these segments are aligned
to the genome using
spliced alignment strategy.

* The alignment tool used by
Tophat2 is Bowtie2.



Alignhment-free method



Is it possible to map reads to transcripts
without (precise) alignment?

Alignment: Transcript 1 | Transcript 2 | Transcript 3
Read 1 57, 107] Not align Not align
Read 2 Not align [12, 62] Not align
Read 3 Not align Not align [134,184]
Read 4 [66, 116] Not align [85, 135]
Alignment-free: Transcript 1 | Transcript 2 | Transcript 3
Read 1 1 0 0
Read 2 0 1 0
Read 3 0 0 1
Read 4 1 0 1

Read is aligned at
the specific range
of [start, end]

1: compatible
0: incompatible

e Motivation: Knowing the compatibility between reads and transcripts is enough to measure transcript
expression levels, without needing to know the exact location of the reads on the transcripts.



Pseudo-alignment with TDB graph

Kallisto
—
— —— e The input for Kallisto includes a reference
T D transcriptome and RNA-Seq reads.
o Kallisto constructs a transcriptome de
. ,\ Bruijn graph (T-DBG) using k-mers as
—————-a=:ey nodes.
e The T-DBG allows for the efficient
identification of compatibility
N S50 relationships between reads and
. = transcripts, without requiring precise
U - read mapping to the transcripts.
e Kallisto is able to quantify transcript
Vi V2 Vg s P expression levels based on these
e O () compatibility relationships.
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Bray, Nicolas L., et al. "Near-optimal probabilistic RNA-seq quantification."”
Nature biotechnology 34.5 (2016): 525-527.



Performances of different tools



How different tools compared to each-
other in accuracy?
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Scientific reports 7.1 (2017):

Figure 3. High fold change correlation between RT-qPCR and RNA-seq data for each workflow. The 1559.
correlation of the fold changes was calculated by the Pearson correlation coefficient. Results are based on RNA-
seq data from dataset 1.

* When RT-gPCR is used as a technically independent validation, all types of gene

expression quantification workflows can explain approximately 93% of the variances (R2).



Running time of different methods
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method ' ' '
Aligner
bowtie2 No No Fast Small
STAR Yes No Fast Large
Tophat2 Yes No Slow Large
Hisat2 Yes No Fast Small
Kallisto Yes Yes Altra fast Very small
Salmon Yes Yes Altra fast Very small

 For DNA-Seq based assays, bowtie2 is recommended.
 For RNA-Seq based assays, Hisat2 or Tophat2 is recommended.



Why not only use alignment-free methods?

Total RNA Top 1% Top 10% Top 25% Bottom 75%
1.00 1

* Alignment-free and traditional
alignment-based quantification
methods have similar performance for
N B STz eatreCouns common gene targets such as
B protein-coding genes.
I_ll * However, alignment-free methods

g have limitations in analyzing and
b quantifying lowly-expressed genes

0-25% 75-100%
(Longest genes) 25-50% U (Shortest genes)

and small RNAs, particularly when
these small RNAs have biological

| variations.

7 I HISAT2+eatureCounts

. B * Therefore, sliding windows in peak
l_ll I calling cannot be reliably quantified

using alignment-free methods due to
their small feature (bin) size.
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Limitations of alignment-free tools in @
total RNA-seq quantification
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