

BIO214 Lecture 11

Bioinformatics-II

Genome Assembly & variant analysis

Zhen Wei; 2023-Feb-17

Outline

- Efficient assembly of short reads with De bruijn graph
- Detection of genetic variants
- GWAS
- eQTL

An efficient algorithm for short reads based genome assembly

De Bruijn graph-based genome assembly algorithm:

- Step 1: Short reads broken into small pieces (k-mers) and de Bruijn graph constructed.
- Step 2: Genome derived from de Bruijn graph by finding the longest possible path (Eulerian walks).

Genome: AAABBBBA

https://www.youtube.com/watch?v=TNYZZKrjCSk

3-mers: AAA AAB ABB BBB BBB BBA

- One edge per k-mer
- One node per distinct k-1 mer

• Walk crossing each edge exactly once gives a reconstruction of the genome.

AA

SPAdes

Assembly	NG50	# contigs	Largest	Total length	МА	ММ	IND	GF (%)	# genes
Single-cell E. coli									
A5	14399	745	101584	4441145	3	11.92	0.19	89.867	3443
ABySS	68534	179	178720	4345617	6	3.49	0.83	88.265	3704
CLC	32506	503	113285	4656964	1	5.54	1.00	92.286	3767
EULER-SR	26662	429	140518	4248713	12	9.98	20.17	84.846	3410
Ray	45448	361	210820	4379139	16	5.29	1.24	88.345	3634
SOAPdenovo	1540	1166	51517	2958144	1	1.49	0.11	57.668	1766
Velvet	22648	261	132865	3501984	2	2.19	1.17	73.761	3079
E+V-SC	32051	344	132865	4540286	2	2.26	0.70	91.727	3767
IDBA-UD contigs	98306	244	284464	4814043	3	4.37	0.23	95.158	4041
IDBA-UD scaffolds	109057	229	284464	4813609	3	4.42	0.75	95.145	4046
SPAdes 3.12 contigs	105885	231	268283	4795250	3	2.02	0.30	94.853	4028
SPAdes 3.12 scaffolds	117600	214	285212	4800301	3	2.41	0.61	94.886	4030

https://cab.spbu.ru/software/spades/#examples

- SPAdes is a de-brujin graph based genome assembler.
- By default SPAdes assembles using kmers of lengths 21, 33, and 55 and chooses the assembly with the best N50 score.
- N50 can be understood as the median contig length in the assembly.

Detection of genetic variants

Variant calling pipeline

VCF format

 The Variant Call Format (VCF) is the standard file format for storing genetic variation and was developed as part of the 1000 Genomes Project.

Copy number variation detection

- CNVs are regions of the genome with variable number of copies.
- DNA-Seq can detect CNVs by analyzing the number of sequencing reads that map to a genomic region.
- Higher reads suggest a duplication, while lower reads suggest a deletion.
- CNV detection requires careful normalization and calibration, as read depth can be affected by factors such as GC content, mappability, and sequencing bias.

Genome-wide association analysis

GWAS at a glance

GWAS aim to identify if any of the millions of SNPs are associated with a specific disease (e.g. Cancer) or trait (e.g. Hight / intelligence).

GWAS test using linear regression

Account for confounding variables

Population Structure:

- Systematic differences in allele frequencies between subgroups in a population due to non-random mating between individuals.
- Can be estimated from data using statistical methods such as PCA.

Kinship:

- Describes the genetic relatedness between individuals in a population.
- Kinship matrix is often modeled as the covariance of the random effect term.

Expression quantitative trait loci

General workflow

https://adinasarapu.github.io/posts/2017/12/blog-post-eqtl/

- An expression quantitative trait locus (**eQTL**) is a genetic locus that affects gene expression.
- eQTL mapping studies use RNA-Seq data to identify eQTLs.
- Variants are called either from DNA-Seq / RNA-Seq; expression levels are quantified via the regular pipeline, and differential analysis is performed between genotypes.

Cis & trans QTL

(c)

Total Read Count

220

200

180

160

140

CC

cis-eQTL:

- Variants affecting expression of local genes.
- Found in promoter and gene body of the effected genes.

trans-eQTL:

- Variants affecting expression of distal genes.
- Found in other regions.

trans-eQTL

Sample 2: genotype TA

AA

Accounting for hidden batches

- P values of eQTL association are calculated from the linear regression tests with the following regression equation.
- expression = α + $\sum_{k} \beta_{k} \cdot covariate_{k}$ + $\gamma \cdot genotype$
- The *K* covariates are estimated by hidden variable inference methods such as PCA, SVA, PEER or HCP.

Accounting for hidden batches

- P values of eQTL association are calculated from the linear regression tests with the following regression equation.
- expression = α + $\sum_{k} \beta_{k} \cdot covariate_{k}$ + $\gamma \cdot genotype$
- The K covariates are estimated by hidden variable inference methods such as PCA, SVA, PEER or HCP.

In silico mutation analysis

In-silico mutation

- *f*() is a sequence based predictive model, it accepts an input of a DNA string and output a probability of the string being a functional epigenetic modification or protein.
- Calculate the probabilities of WT sequence and mutated sequence (e.g. caused by a SNP)

```
f(WT \text{ sequence }) \rightarrow \text{prob1}
```

```
f( mutated sequence ) \rightarrow prob2
```

- Inference of SNP function:
 - prob1 >> prob2: **loss of function** mutation
 - prob1 << prob2: gain of function mutation