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• Motif discovery
• Genomic predictive modeling
• Evaluating model performance

Outline



Motif discovery



What computational techniques can be 
used to interpret biological sequences?

5’ - ATGCTAACGTACAGCGCTAGGATCGTG - 3’

Human genome sequence: ~ 3 billion bp

• With the advancement of NGS techniques, DNA & RNA & Protein
sequences are massively measured by researchers.

• How to gain insights from the primary biological sequences?
Motif discovery: finding repetitive patterns

Genomic predictive modeling: predict genomic markers & conservation 
scores directly from sequences.

MLTYRARIV 
5’ - AUGCUAACGUACAGCGCUAGGAUCGUG - 3’

Transcription

Translation



• The motifs can be discovered from:
Sequences of common function (e.g. Zinc-
Finger DNA binding domain, phosphorylation 
sites).

From antibody pull down experiments (e.g. 
CHIP-Seq).

Comparative genomics by multiple-sequence 
alignment.


• What we can do with the motifs:
Predict DNA / RNA binding protein binding 
preferences.

Predict covalent-modification sites on protein / 
DNA / RNA.

Recover the network of gene expression 
regulation. (Know which protein / RNA / DNA is 
regulated by which regulator at what residue)

Zinc-finger protein motif

Human 5’ splice site motif

Nucleotide epigenetic modification motif

Sequence motif



Computational representation of motif
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• Motif is often described by PPM (position probability matrix), which 
summarizes the probabilities of observing different nucleotides (rows) at 
each positions (columns) of the motif sequences.



How to discover motifs over a set 
of long genomic sequences?

AGACT 

GGACT 

GAACG 

TGACA 

GGACT 

TAACT 

GGACT 

CGACG CGACA

ACACT 

Known set of functional relevant 
sequences (e.x. context of single based 
resolution epigenetic modification sites)

Directly 
calculate motif 

PPM

5’ - AGACTAACGTACAACGCTAGGACTGTG - 3’

5’ - ATGCTATAGGGTAAACGACGT - 3’

5’ - AGGATCGAGGACAACGT - 3’

5’ - GTACAGCGGACACGT - 3’

Set of longer sequences that 
contain potential motifs  (e.x. Peaks 
from CHIP-Seq experiment)

Discover potential 
motifs using EM 

algorithm

Top 1 
enriched 
motif:



MEME: motif discovery software

• MEME is a IPVPUMVYTH[PJ tool to identify unknown short motifs over long
input�sequences (e.g. > 10000 bp).

• Its core method is based on the following EM algorithm:
Randomly initialize motif PPM.

Iterate:


E-step: Infer expected counts of the motif over long sequences,
given the current motif PPM.
M-step: Calculate updated motif PPM from the expected counts.

Repeat until convergence.

https://meme-suite.org/meme/doc/meme.html


How to discover motif with EM algorithm?

5’ - AGGATCGAGGACAACGT - 3’ 

5’ - AGACTAACGTACAACGCTAGGACTGTG - 3’ 

Scan all potential 5-mers 
in the sequences

E.x. For a motif with length = 5:

AGGAT
AGACT

GGATC

GATCG
ATCGA TCGAG

…

Given a five-mer, e.g. AGGAT, its count on a given PPM is calculated as:

 ; where  is the probability of  th position in 

the PPM equal to nucleotide .

pA,1 * pG,2 * pG,3 * pA,4 * pT,5 pi,j j
i ∈ {A, T, C, G}

E-Step: 

AGGAT
AGACT

GGATC

GATCG
ATCGA TCGAG

…
Calculate “counts” for every 

5-mers using PPM

0.3 0.8

0.20.6

0.3 0.4



How to discover motif with EM algorithm?

Using the associated counts/weights of K-mers, recalculate PPM by the
weighted nucleotide frequencies at each position.

M-step:

AGGAT
AGACT

GGATC

GATCG
ATCGA TCGAG

…

0.3 0.8

0.20.6

0.3 0.4

0.3 × AGGAT
GGATC0.8 ×
AGACT0.6 ×
GATCG0.2 ×
. . .

Updated PPM

Weighted 
frequency tabling.



Position 1
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Position 3
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• The motif finding process is essentially a soft clustering on discrete variable
space.

• Like gaussian distributions are fitted in GMM, the fitted probabilistic models
here are the multinomial distributions (rolling dices with 4 faces).

Motif finding is a soft clustering



Genomic predictive modeling



Supervised machine learning modeling

How to predict epigenetic markers from 
DNA sequence automatically?

Motif based prediction

Functional relavent

DNA sequences 


(e.g. CHIP-Seq peaks) 

Discover motifs

m6A motif

Given a new DNA sequence, scan for 
motif as candidate prediction. 

GGACA GCACT CCACA

Positive 
sequences (e.g. 
flanking region 
of epigenetic 
markers)

Negative sequences 
(e.g. genome 
background)

Or

HMM

Deep learning

Inference over new sequence using 
the trained prediction model.

Z

• Often more accurate and�ZWLJPMPJ�
than the motif based method.



CpG island

• GC content (the fraction of letters that are a C or a G) can be used to classify the�
genome into high-GC regions (on average 60% G or C) and Sow-GC regions (on�
average 60% A or T).

• The high and low GC regions have different melting temperatures, different�
replication times across the cell cycle, and different gene density. They have also�
been hypothesized to have different evolutionary origins.

• How to encode the properties of GpG island in a probabilistic model?

Case: finding CpG island from DNA sequence

Background

Outcome of 
classification:



Hidden Markov model for CpG island

A G

G C

Two dices (states), each with outcomes 
corresponding to the four nucleotides.

background

CpG island

A: 0.30

T: 0.30

C: 0.20

G: 0.20

A: 0.20

T: 0.20

C: 0.30

G: 0.30
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parameters
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parameters
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• HMM is a commonly used machine
learning model for biological
sequences.

• Considering 2 unfair dices, each
with 4 faces of {A, T, C, G); one is
for genome background and
another is for CpG-island.

• At each roll, we will either keep the
current dice, or switch to the other
one. The initial roll is selected
evenly between the 2 dices.

• After rolling a series of outcomes,
we have generated a DNA string, in
which the CpG island properties are
encoded by the transition and
emission parameters.

Specify probabilities of dice switching Specify parameters of each dice



State inference (prediction)

Viterbi algorithm  
(Return binary classification):

Forward backward algorithm 
(Return probabilities):

Classify the regions of CpG island 
from background on genome.

Predict protein coding genes.

Estimating a score for evolutionary 
conservation along the genome. (e.g. 
phastCons score in phylo-HMM)

• After estimating the transition & emission parameters from the data, one can
compute the state posterior along the genome using Bayesian inference.

• State posterior  := P(state at position i | the entire observed sequence)
• Two inference algorithms are often used: Viterbi algorithm and forward backward

algorithm.

Real case 
applications:



State inference from a 
graphical perspective
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CpG

Non-CpG 
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• Viterbi algorithm is estimating the most likely pathway of states given
the observed sequence.

State inference from a 
graphical perspective



• Forward backward algorithm is estimating the state probabilities given
the observed sequence.
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State inference from a 
graphical perspective



More applications of HMM in genomics

• HMM is often used to decode or parse a genome into its biological�
components: NLULZ��exons, introns, regulatory regions.

• In addition, conservation states of nucleotides and regions can be learned�
(often in the form of conservation scores).

(PhastCons 
Score)

�.LUL�7YLKPJ[PVU�



Phylo-HMM (PhastCons score)

• The Phylo-HMM aims to predict level of evolutionary conservation (quantified by
PhastCons score) over genomes.

• 2 latent states are defined: conserved regions ( c ) and non-conserved regions ( n ).

• Observation is the multiple sequence alignment result.

A = (μ 1 − μ
v 1 − v)

π = ( v
μ + v

μ
μ + v )

Transition parameters

Emission parameters

Conserved Regions

Non-conserved Regions



Evaluating model performance



• Different genomic predictors often compete in their performances on the same
end application.

• To avoid overfitting, the performances are required to be evaluated “out of
sample”. In other words, the final prediction accuracy should be reported over
the test set never revealed to the model before.

How to know which genomic predictor 
perform better?

ROC curves of 4 HMM based 
model between positive and 
negative sequences from 
Masato Yano et al 2014.



Classification evaluation metric: AUROC

Ground truth 
(real label) 1 1 0 1 0 0

Predicted 
probabilities 0.8 0.6 0.3 0.6 0.2 0.7

Cut at 0.1, 0.2, 0.3, 0.4 …

3 4

0 0.6
3 3

1 0.6
3 2

1 0.6
3 1

2 0

Confusion matrices

True 
positives

False 
positives

-HSZL 
negatives

;Y\L 
negatives

X axis: FPR = False positives / (True negatives + False positives)

Y axis: TPR = True positives / (True positives + False negatives)

On test set

Predicted
1 0

1

0

Actual



Workflow of sequence based 
supervised learning

a. A dataset should be randomly split into training, validation and test sets. The positive and negative 
examples should be balanced for potential confounders (for example, sequence content and 
location) so that the predictor learns salient features rather than confounders.

b. The appropriate machine learning algorithm is selected and trained on the basis of domain 
knowledge. For example, CNNs (Convolutional Neural Networks) capture translation invariance, 
and HMMs capture more flexible spatial interactions.

c. True positive (TP), false positive (FP), false negative (FN) and true negative (TN) rates are evaluated. 
When there are more negative than positive examples, precision and recall are often considered.

d. The learned model is interpreted by computing how changing each nucleotide in the input affects 
the prediction.

HMM



Performance evaluation: general scheme

Data type of  
ground truth

Data type of  
predicted values

Binary

Categorical

Continuous

Probabilities

Categorical

Continuous

AUROC

Mutual information

Correlation

• The evaluation statistics we choose depend on the forms of the ground
truth labels and the predicted values.



Summary of performance evaluation 
methods used by different data types 

Metric Description ground truth 
data type

predicted value  
data type

Example in bioinformatics 
application

FDR
Proportion of false 
positively predicted 

instances.
 Binary Binary Differential gene expression 

analysis

AUROC
The area under the 
fall-out (x-axis) and 
recall (y-axis) curve.

Binary Class 
probabilities

Supervised classification 
model

Mutual 
information

Information lost 
when encoding the 2 

categorical labels 
independently.

Categorical   
( > 2 classes)

Categorical.      
( > 2 classes) Clustering

Pearson 
Correlation 

Linear correlation 
between the 2 sets 

of values.
Countinous Countinous Gene expression level 

quantification
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