Gel-based Technique for Phosphoproteins Detection

Microarray-based detection techniques for Phosphorylation

Slides from Dr. Mu Wang

Protein microarrays

Labeled protein mixture added

> Specific binding of phosphorylated proteins

LECTURE 6: TARGETED PROTEOMICS

Discovery vs Targeted Proteomics

Discovery Proteomics

 often requires large sample quantities and multidimensional fractionation, which diminishes sensitivity and throughput

Targeted Proteomics(hypothesis-driven proteomics)

- limit the number of proteins that are monitored
- Optimize the chromatography instrument tuning and acquisition methods
- Achieve the highest sensitivity and throughput for hundreds or thousands of samples.

Discovery and Targeted Approaches

Traditional Affinity-based Approaches For Protein Quantitation

Western Blot

 Use "high-quality" antibodies to quantify proteins (even low-level proteins)

• Drawbacks:

- Antibodies do not exist for all proteins, vary widely in quality
- Antibody validation may take months to years to validate
- Lack throughput (quantitative capacity)
- Fewer proteoforms-selective antibodies available
 - Antibodies generally identify amino acid epitopes on canonical protein sequences, so the PTMs or neighboring will be likely to block the epitope and prevent the binding/detection.
 - Proteins with high degree of sequence similarity can not be quantified.

Mass Spectrometry-based Approaches for Protein Quantification in Targeted Proteomics

- Selected Reaction Monitoring (SRM)/ Multiple Reaction Monitoring (MRM)
 - Quantifies specific, predetermined ions from peptide of interest
- Parallel Reaction Monitoring (PRM)
 - Analyzes all fragment ions of the preselected peptides of interest
- Data Independent Analysis (DIA) (as known as SWATH)
 - Analyzes all peptide mass ranges within the window without pre-selection

Selected Reaction Monitoring (SRM)/ Multiple Reaction Monitoring (MRM)

- Triple Quadrupole acts as ion filters
 - Precursor selected in first mass analyzer (Q1) with a narrow window (e.g., ±1 m/z)
 - Fragmentation (q2)
 - One or several of the fragments are specifically measured in the second mass analyzer (Q3)

Workflow of an SRM/MRM Experiment 1. Selection of target proteins to be quantified

2. Selection of target peptides to be quantified

3. Synthesis of unlabeled and labeled peptides

4. AAA and LC-MS/MS optimization

5. Preparation of calibration curve

6. Preparation of protein sample 7. Preparation of peptide sample:
1) Denaturation 2) Reduction/alkylation
3) Enzymatic digestion 4) Mix with stable isotope labeled peptide mixture
5) Acidification 6) Desalting

8. Analysis by LC-MS/MS

9. Calculation of protein expression level

Selection of Target Peptides

1. Selection of best **representative (proteotypic) peptides** per protein

- Select unique peptides for a given protein to achieve maximum selectivity
- Select **best-flying** peptides per protein to achieve maximal sensitivity
- 2. Selection of optimal transitions per peptide
 - Transition: Precursor-Fragment ion pair are used for protein identification (sequence-specific)
 - e.g., Peptide 1 (NYCGDFTSSK) and Peptide 2 (NYCGSDTFSK) has the same precursor mass but different fragmentation patterns
 - Select both Q1 and Q3 prior to run
 - Q1 doubly or triply charged peptides
 - Pick Q3 fragment ions based on <u>discovery experiments</u> or <u>spectral libraries</u>
 - Typically, 3-5 fragment ions per peptide are measured.
 - One to three unique peptides with good quantitative properties are used for protein quantification.

3) m/z=561.59, M+2H⁺ → m/z=684.71, M+H⁺

Selecting SRM/MRM Peptides₁

- A few representative peptides will be used to quantify each protein
- Need to fulfill certain characteristics
 - Have a **unique** sequence
 - Good ionization efficiency
 - Consistently observed by LC-MS methods with a good signal-to-noise ratio
 - m/z within the range of the instrument
 - No missed cleavages
 - 8-25 amino acids
 - Not too hydrophilic (poorly retained) or hydrophobic (may stick to column)

Selecting SRM/MRM Peptides₂

- Ensure complete proteolysis
 - Avoid missed-cleaved or partly tryptic peptides
 - Avoid tryptic peptides with two neighboring basic amino acids at either cleavage site (KK, RR, KR, RK)
 - Avoid acidic residues (D, E) close to the cleavage site
 - Avoid N-terminal proline cleavage (KP, RP)
- Avoid peptides prone to chemical modifications
 - W and M are prone to oxidation
 - N-G or Q-G are prone to deamidation
 - N-terminal cyclization of Q and E and carbamidomethylated C
- Avoid peptides carrying biological modification (PTMs)
 - Check PTM repositories (UniProt etc.) or use PTM prediction tools
 - Avoid known PTM-motif such as the N-X-S/T glycosylation motif
 - Avoid N- and C-terminal peptides as they are more prone to degradation

Open Source MRM Analysis Tools

- Target peptides for each target protein are selected based on genomic information and information stored in publicly accessible proteomic data repositories or computational prediction.
- Suitable SRM transitions for each target peptide are empirically extracted from mass spectrometry data (preferably collected on triple quadrupole-type instruments), or calculated using suitable computational interfaces.

Identifying Proteotypic Peptides

Proteotypic: describes a peptide sequence that is found in only a single known protein and therefore serves to identify that protein.

GPMDB (Global Proteome Machine DataBase)

- Compares peptides to a collection of previously observed results
- Determines how many times the peptide has been observed by others
- Most proteins show very reproducible peptide patterns
- We used this site to determine **which peptides were most likely to be seen** in our own MS experimentation.

#	log(e)	θ	model	coverage metadata sequence tissue+cells
1.	-217.4	24.9	G P O	
2.	-107.5	14.0	G P O	
3.	-107.5	14.0	G P O	
4.	-107.5	14.0	G P O	
5.	-78.8	10.4	G P O	
6.	-64.8	10.1	G P O	
7.	-50.8	10.7	G P O	
8.	-48.6	7.1	G P O	
9.	-39	7.5	G P O	
10.	-35.6	5.7	G P O	

black line: indicates the full length of the protein (all sequences are the same length in this display);
red bars: indicate observed peptides (the darker the red, the more confident the observations);
green bars: indicate regions of the protein that may be difficult to observe, using standard proteomics techniques; and
cyan bars: indicate peptides with the motif for N-linked carbohydrates.

Skyline

- freely-available and <u>open</u>
 <u>source</u> Windows client application
- Builds SRM/MRM, Parallel Reaction Monitoring (PRM), Data Independent Acquisition (DIA/SWATH) and DDA with MS1 quantitative methods
- analyzes the resulting mass spectrometer data.
- Compares peptides to MS/MS spectral libraries
- Predicts most abundant transitions

Selecting Transitions: Skyline

- Can use it to find best transitions to pick
 - Intensity (rank)
 - Dot product (dotp, similarity to reference spectra)

Want high rank and dotp close to 1

Selecting Transitions: SRMCollider

- Input peptides of interest
- Determines the m/z values for transition pair
- Simulates a typical SRM experiment
- Predicts fragment intensities and retention time information for input peptide
- Compares the transition to all other transitions in a background proteome
- Outputs the number of predicted interferences for each transition for that peptide

S	RM Col	lider	version 1.4 Hannes Röst 2012
Collider Downlo	oad About	Instructions	
The SRMCollider is a program that will take given background proteome and find interfere identify peptides that share many transitions	ences. It will report these inter with the target peptide.		
Please enter the peptide sequences here (see YDEDGMDCMDNER	Instructions for help):		
		-	t peptide quence
SSRCalc window	2	arbitrary units	
Q1 mass window	0.7	Th	
Q3 mass window	1.0	Th	
Low mass threshold for transitions	300	Th	
High mass threshold for transitions	1500	Th	
Genome	Human (tryptic)	•	
Consider isotopes up to	3	amu	
Missed Cleavages	0		
Find UIS up to order*	5		
Charge check: 🗹 Check that interfering sign	aal can actually hold charge (e	.g. 2+ charge)	
Modifications: 🔲 oxidized Methionines 🗐	deamidated Asparagines		

Peptide YDEDGMDCMDNER

Sequence	Q1	Q1 window	<u>SSRCale</u>	SSRCale window	Interfering precursors	Background	Graph
YDEDGMDCMDNER	796.769077374	± 0.35	15.82	± 1.0	32	human	Graph

Transition Overview

Transition	Q3	Interferences	Grapi
y10	1185.4	0	Grap
y9	1070.37	0	Grapi
уб	767.28	0	Grapi
y5	664.27	0	Grapi
b 3	408.14	0	Grapi
b4	523.17	0	Grapi
65	580.19	0	Grapi
66	711.23	0	Grapi
b 7	826.26	0	Grapi
ь10	1175.33	0	Grapi
yll	1314.44	1	Grapi
y8	1013.35	1	Grapi
y7	882.31	1	Grapi
y4	533.23	1	Grapi
y3	418.21	1	Grapi
y2	304.16	1	Grapi
68	929.27	1	Grapi
69	1060.31	1	Grapi
y12	1429.47	2	Grapi
b11	1289.38	3	<u>Grapi</u>
b12	1418.42	3	Grapi

Choose peptides that have at least one transition with zero interferences

Validating Transitions: AuDIT

- <u>AuDIT</u>: <u>Automated Detection of</u> <u>Inaccurate and imprecise Transitions</u>
- The orthogonal modalities allows a transition with either a significant P value or an unacceptable CV to be marked as "bad" as a whole and thus be deemed unacceptable for quantification.
 - Apply t-test to determine if relative ratios of analytes are different from relative ratios of SIS (Stable Isotope Standard)
 - CV measurements of replicate samples (either technical replicate injections of the same sample or process replicates). Usually, CV > 20% is deemed problematic.

Validating Transitions: AuDIT

XICs for 3 transitions of analyte peptide and SIS

Relative product ions should have a constant relationship

Finding Interference: Simple vs. Complex Matrix

Complex = millions of peptides

- MRM/SRM are most useful when quantifying protein in a complex matrix
 - Tumor lysate
 - Plasma/Serum
- Simple matrix (buffer) should have no interference use this as *reference*
- Compare the transitions in complex to those in simple matrix
- Transitions in complex should have the same relative intensities of transitions
- Ratio close to 1 indicates low interference

Simple Example of Complex vs. Simple

Finding Interference: Simple vs. Complex Matrix

Workflow of an SRM/MRM Experiment

the blood–brain barrier in ddY, FVB, an." Fluids & Barriers of the Cns 10.1(2013):1-22.

Absolute Quantification

- Use known quantity of isotopically labeled reference protein or ¹³C/¹⁵N labeled peptide analogs that are chemically identical to the target peptide but with mass difference.
- Compare signals for the analyte (light) to the <u>stable isotope standard</u> (SIS, heavy) to calculate the concentration.
- Peak area ratio (PAR) = $\frac{analyte(light)peak area}{SIS (heavy) peak area}$

-Use at least 3 transitions

-Have to make sure no interference in those transitions

1 Precursor ion with 4 fragment ions for both analyte (left) and IS (right)

37 different proteins can be simultaneously quantified in a single analysis using the currently available maximum of 300 SRM/MRM transitions (multiplexed SRM/MRM analysis).

Typical calibration curve for absolute quantification

the blood-brain barrier in ddY, FVB, an." Fluids & Barriers of the Cns 10.1(2013):1-22.

1. Selection of target proteins to be quantified

2. Selection of target peptides to be quantified

Workflow of an SRM/MRM Experiment

4. AAA and LC-MS/MS optimization

5. Preparation of calibration curve

8. Preparation of protein sample 7. Preparation of peptide sample:
1) Denaturation 2) Reduction/alkylation
3) Enzymatic digestion 4) Mix with stable isotope labeled peptide mixture
5) Acidification 6) Desalting

8. Analysis by LC-MS/MS

9. Calculation of protein expression level

the blood–brain barrier in ddY, FVB, an." Fluids & Barriers of the Cns 10.1(2013):1-22.

An example of ambiguous SRM/MRM chromatograms of a biological sample

Step 1: SKYLINE for creating targeted MS/MS methods

Skyline digests proteins, and fragments peptides, and uses spectral library to find transition intensity

	MS/MS Spectrum						4 Þ
HSFFSGVNWQDVYDK Signal A Stresser (ank 7) Ju N [v8] - 1067.4793+ (rank 7) Ju N [v7] - 953.4363+ (rank 8)	¹² T	Human N	IIST Ion Trap - H	ISFFSGVNWQDV	/DK, Charge 3		
- ∫ _k 0 (6) - 767.3570+ (ank 3) - ∫ _k 0 (5) - 639.2984+ (ank 1) - ∫ _k ∨ (b4) - 524.2715+ (ank 5) - ∫ _k ∨ (b4) - 524.2715+ (ank 5) - ∫ _k F (b4) - 519.2505+ (ank 10) - ∫ _k 0 (b6) - 663.2885+ (ank 4) - ∫ _k ∨ (b7) - 762.3570+ (ank 2) - ∫ _k ∨ (b7) - 762.3570+ (ank 6) - ∫ _k ∨ (b7) - 762.3570+ (ank 6) - ∫ _k ∨ (b7) - 762.3570+ (ank 6)	10 -						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8 -						
Y [y]. 409,2445+ (rank 5) D [b4] - 526,2045+ (rank 8) V [b5] - 625,2729+ (rank 6) V [b7] - 852,3939+ (rank 7) TSAALSTVGSAAISR 440,9088+++	Intensity (10^3)						
			y5 (rank 1)	b7 (rank 2)			
S[b6] - 531.2773+ (rank 5) T[b7] - 632.3250+ (rank 9) V[b8] - 731.3934+ (rank 6)	2 -	y3 (rank 5)	bő (rank 4)	b8 (rank 6)	y8 (rank 7)		
	0	y2 (rank 11) b3 (rank 12) b4 (ra	600	800	b9 (rank 13)	1200	1400

Step 2: Skyline for MRM - Method Building

Input all peptides of interest

Shows graphs of MS/MS spectra from spectral library

Step 3: Skyline for MRM - Method Building

- Helps generate proteotypic peptide lists using MS/MS spectral libraries
- Find which peptides can be measured in specific matrix
- Find best transitions to measure for a peptide
- Creates transition lists and vendor-specific instrument methods for MRM experiments

Step 4a: Skyline for MRM - Quantification

- Import raw files into skyline
- Pick peptide of interest
- Check standard peaks

Step 4b: Skyline for MRM - Quantification

- Use the heavy standard PAR (Peak-Area-Ratio) to make calibration curve
- Determine sample quantity based on curve

Advantages of SRM/MRM

- Rapid: faster than antibody-based methods Relative or Absolute Quantitation
- Ideal for monitoring abundance of a set of predefined target proteins or PTMs over many samples.
- Wide dynamic quantification range (4-5 orders of magnitude) and high sensitivity
- High degree of reproducibility
- Well supported by public resources
- Efficient reduction of noise
- Rapid switch between transitions (<2ms)
- High sensitivity, multiplexing

Disadvantages of SRM/MRM

- Low resolution
- You need to know what to look for in advance!
- Prior knowledge about target proteins and PTMs required (SRM assay)
 - Need to know charge state, retention time and relative product ion intensities before experimentation
 - Peptide candidates need to be unique
- Limited multiplexing capacity that can be measured at once (ca. 1000 transitions per run)
 - Physical limit to the number of transitions can get around this by using timescheduled SRM, monitor transitions for a peptide in small window near retention time

Recommended reading: Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. <u>Nature Protocols</u> volume 16, pages3737–3760 (2021)

Parallel Reaction Monitoring (PRM)

- Quadrupole Orbitrap or Quadrupole TOF
 - Simplified method design
 - Produce full MS2 spectra for each precursor
 - Flexible data analysis
 - Don't have to choose fragment ions beforehand

Q1: Filter mode with a narrowisolation windowQ2: FragmentationQ3: Analyze all fragment ionssimultaneously with Screening mode

Advantages of PRM

- PRM has flexibility in selecting the fragment ions, because it retrieves the chromatographic peaks of those fragment ions that are most suitable for peptide identification and quantification
- High resolution and high mass accuracy, which results in an increased selectivity as compared to triple quadrupole instruments.
- PRM exhibits a high dynamic range, high signal-to-noise, and excellent sensitivity and specificity for peptide and protein quantification.
- PRM only acquires information for the pre-selected peptides of interest.
- PRM provides both identification and quantification information.

Data-Independent Acquisition (DIA)/SWATH

- MS2 data-independent acquisition methods are usually implemented in <u>quadrupole-</u> <u>orbital ion traps</u>, and <u>quadrupole</u> <u>TOF</u> hybrid mass analyzers.
- These methods rely on the use of one or several broadband isolation windows that isolate all peptide ions in a sample within each cycle.
 - 32 consecutive 25 Da precursor isolation windows

Data-Independent Acquisition (DIA)/SWATH

- All peptide ions within a window are simultaneously fragmented, and the resulting fragment ion maps can be subjected to targeted data analysis to identify the coeluting fragment ion groups from the peptides of interest.
- Generate data for all peptides and therefore, the targets of interest can be selected post-acquisition.
- Can only be considered targeted as long as there is a hypothesis to be tested.
 - different protein isoforms, splicing variants, and specific modified peptides

Classification in Proteomics

- According to the information they can provide:
 - Relative quantification
 - peptide abundance ratio → relative protein abundances calculation
 - Absolute quantification
 - Comparing ion intensity of a peptide with the ion intensity of an **identical chemically synthesized heavy isotope labeled peptide** spiked in with *known concentration* as an internal standard.
- According to the underlying methodology:
 - Label based proteomics
 - Label free proteomics
- According to the pre-selected range of proteins
 - Discovery proteomics
 - Targeted proteomics