LECTURE 2-2: IDENTIFICATION OF PROTEINS IN COMPLEX MIXTURES - A MASS SPECTROMETRY APPROACH

Bio312

Instructor: Dr. Lanlan Han E-mail: lanlan.han@xjtlu.edu.cn

MS basics: Review

MALDI-MS of horse heart myoglobin Singly charged ions

To deconvolute the myoglobin mass,

1. Calculate the charge

$$z_n = \frac{m_{n+1} - 1.0078}{m_n - m_{n+1}}$$

- 2. Calculate the mass of each ion
- 3. Average them with deviation

$$m/z=\frac{m+z}{z}$$

myoglobin MW = 16953.6 – 1 = 16952.6 Da

MS basics: Review

2. MS analyzers: Separate ions based on m/z (mass/charge) ratio

MS basics: Review

2. MS analyzers: Separate ions based on m/z (mass/charge) ratio

FT-ICR

General Workflow in Proteomics Analysis: Review

Protein Identification and Characterization Map

Databases

- Three components are required for database searching support of proteomics: <u>MALDI or MS/MS data</u>, <u>the algorithms</u> used to search protein databases, and the <u>protein databases</u>.
- A reality for database searching is that these protein databases are constantly changing, making database search results potentially obsolete as new entries are added that better fit the MALDI or MS data.
 - Even as genomes are completed, there is still flux as new coding regions are identified and novel mechanisms of increased translational complexity are better understood, such as alternative splice products, RNA editing, and ribosome slippage leading to novel, unexpected translation products.

Some Representative Internet Sources for Protein Identification from Mass Spectrometric Data

Program	Web Address
BLAST	http://www.ebi.ac.uk/blastall/
Mascot	<u>http://www.matrixscience.com/cgi/index.pl?page=/home.html</u>
MassSearch	<u>http://cbrg.inf.ethz.ch/Server/ServerBooklet/MassSearchEx.html</u>
MOWSE	http://srs.hgmp.mrc.ac.uk/cgi-bin/mowse
	http://www.narrador.embl-
PeptideSearch	heidelberg.de/GroupPages/PageLink/peptidesearchpage.html
Protein Prospector	http://prospector.ucsf.edu/
Prowl	http://prowl.rockefeller.edu/
SEQUEST	http://fields.scripps.edu/sequest/

2. Fragment Ion Analysis: Review

- Peptide can be fragmented by collision-induced dissociation (CID) (and other methods)
 - --- Collisions with neutral inert gas molecules (nitrogen, argon, etc.)
 - Charge stays on *either* the 'left' (a, b, or c) or 'right' (x, y, or z) side of cleavage
 - Cleavage along the CO-NH bond is most common, generating 'b' and 'y' ions

- <u>Letter</u>: Indicates the bond broken and the terminus contained in the fragment
- <u>Number</u>: Indicates the number of Cα in the fragment

Second step: Cleavage along the CO-NH bond is most common, generating **b** and **y** ions

For a singly protonated peptide, Neutral N term and Singly charged C-term ion (+H⁺) and neutral C-term

For a doubly protonated peptide, both N- and C-terminal fragments can be generated from a single dissociate event.

Different Precursor Ion Charge States Have Different Cleavage Patterns

Localized proton, selective fragmentation

Free proton, non- or less selective fragmentation

Free proton, non-selective fragmentation and multiply charged fragments

The Proline Effect in Fragmentation – Cleavage Favored N-terminal to Pro

Figure 1 MS/MS spectrum of the peptide [LVEGLANDPENKVPLIK + 2H]2+ acquired by CID in an ion trap. Although many peaks are a-, b-, and y-sequence ions, many other peaks are unidentified.

Breci et al 2003 Anal. Chem., 75 (9), 1963 - 1971

Peptide Sequencing

- Ideally, one can measure the spacings between product ion peaks to deduce the sequence
 - if each amide bond dissociates with equal probability
 - if only a single amide bond fragments for each molecule
 - if only C-terminal or N-terminal products ions are formed
- In reality, this is not the case...

Fragmentation Results in a Peptide "Ladder"

Peptide: A-B-C-D-E

	<u>b-ions</u>	<u>y-ions</u>	
$\mathbf{b_1}^+$	A	BCDE	Y 4 ⁺
b_{2}^{+}	AB	CDE	Y 3 ⁺
b_{3}^{+}	ABC	DE	y ₂ ⁺
b_4^+	ABCD	E	Y 1 ⁺

Mass Spectrum (Assignment of *b*- and *y*-ions)

- Mixture of b ions and y ions
- MS/MS of 2⁺ charged tryptic peptides yield (often) 1⁺ charged product ions (but 2⁺ charged products can be observed as well)

Not all b ions or y ions are visible

The mass of the precursor is 1454 (the observed ion was doubly charged) 728.382 x 2 - 2 = 1454.764 Da Precursor ion (M+2H⁺) is 1456.764 Da.

https://www.researchgate.net/profile/Rebecca-Levin-2/publication/49660823/figure/fig2/AS:214315966701573@1428108316420/Tandem-mass-

spectrometry-MS-MS-spectrum-of-labeled-lysine-peptide-MS-MS-of-the-H3.png

 Amino acid sequence can be deduced by the ∆mass between adjacent y ion peaks or adjacent b ion peaks

Mass of b-ions = Σ (residue masses) + 1 (H)

Mass of y-ions = Σ (residue masses) + 19 (OH + H + H⁺)

100	(M+H)+	533.220	
	Mw = 532	2.220 Da	400.183
50-13	134.044 0.049 134.044 134.044 13 13 13 13 13 13 13 13 13 13 13 13 13	248.087 ^{286.139} 347.156 14 .87.071 99 .87.071 114	404.177 7
100		99 .85 270 355	4

Complementary b/y lon Pairs

Code (1 letter)	Monoisotopic mass
G	57.021 47
A	71.037 12
S	87.032.03
Р	97.05277
V	99.068 42
Т	101.047 68
С	103.009 19
Ι	113.08407
L	113.08407
N	114.04293
D	115.02695
Q	128.058 58
K	128.09497
E	129.042 60
M	131.04049
Н	137.05891
F	147.068 42
R	156.101 12
Y	163.063 33
W	186.079 32

Δ **mass** and Complementa b/y Ion Pairs

						Code (1 letter)	Monoisotopic mass	
ary	$b_1^+ \\ b_2^+ \\ b_3^+ \\ b_4^+$	<u>mass¹⁺</u> 130.049 187.071 286.139 400.182	<u>b-ions</u> E EG EGV EGVN	<u>y-ions</u> GVND VND VND D	<u>mass¹⁺</u> 404.177 347.156 248.087 134.044	G A S P V T C	57.021 47 71.037 12 87.032 03 97.052 77 99.068 42 101.047 68 103.009 19	
				EGVND		I L N D Q K	113.084 07 113.084 07 114.042 93 115.026 95 128.058 58 128.094 97	
533.220	Ŀ		b ₄ 400.183 y 4 404.177			E M H F R Y W	129.042 60 131.040 49 137.058 91 147.068 42 156.101 12 163.063 33 186.079 32	
Y2 248.087 71 99	b ₃ 286.139 99	y ₃ 347.156 114	57			w	180.079 32	
27	70	355		10				

Summary of Peptide Mass Calculation

- Mass of b-ions = Σ (residue masses) + 1 (H⁺)
- Mass of y-ions = Σ (residue masses) + 19 (OH + H + H⁺)
- M y_{n-1} ion + 1 = mass of 1st residue on N terminus
- M- b_{n-1} ion 17 = mass of 1st residue on C terminus
- Mass of a-ions = mass of b-ions 28 (CO)
- Ser-, Thr-, Asp- and Glu-containing ions generate neutral molecular loss of water (-18).
- Asn-, Gln-, Lys-, Arg-containing ions generate neutral molecular loss of ammonia (-17).
- A complementary b-y ion pair can be observed in multiply charged ions spectra.
 - For this b-y ion pair, the sum of their subscripts is equal to the total number of amino acid residues in the unknown peptide.

Nama	3-letter	1-letter	Residue	Immonium	Related ions	Composition		
Name	code	code	Mass	ion	Related tons	Composition		
Alanine	Ala	Α	71.03711	44		C ₃ H ₅ NO		
Arginine	Arg	R	156.10111	129	59,70,73,87,100,112	$C_6H_{12}N_4O$		
Asparagine	Asn	Ν	114.04293	87	70	$C_4H_6N_2O_2$		
Aspartic Acid	Asp	D	115.02694	88	70	$C_4H_5NO_3$		
Cysteine	Cys	С	103.00919	76		C ₃ H ₅ NOS		
Glutamic Acid	Glu	E	129.04259	102		C ₅ H ₇ NO ₃		
Glutamine	Gln	Q	128.05858	101	56,84,129	$C_5H_8N_2O_2$		
Glycine	Gly	G	57.02146	30		C ₂ H ₃ NO		
Histidine	His	Н	137.05891	110	82,121,123,138,166	C ₆ H ₇ N ₃ O		
Isoleucine	Ile	I	113.08406	86	44,72	C ₆ H ₁₁ NO		
Leucine	Leu	L	113.08406	86	44,72	C ₆ H ₁₁ NO		
Lysine	Lys	K	128.09496	101	70,84,112,129	$C_6H_{12}N_2O$		
Methionine	Met	Μ	131.04049	104	61	C ₅ H ₉ NOS		
Phenyalanine	Phe	F	147.06841	120	91	C ₉ H ₉ NO		
Proline	Pro	Р	97.05276	70		C ₅ H ₇ NO		
Serine	Ser	S	87.03203	60		C ₃ H ₅ NO ₂		
Threonine	Thr	Т	101.04768	74		C ₄ H ₇ NO ₂		
Tryptophan	Trp	W	186.07931	159	11,117,130,132,170,100	$C_{11}H_{10}N_2O$		
Tyrosine	Tyr	Y	163.06333	136	91,107	C ₉ H ₉ NO ₂		
Valine	Val	v	99.06841	72	44,55,69	C5H9NO		

Mass of **b₂ ions (+1)** in peptide fragmentation

	G	Α	S	Р	V	Т	С	I/L	N	D	K/Q	Е	М	Н	F	R	Y	W
G	115																	
Α	129	143																
S	145	159	175															
Р	155	169	185	195														
V	157	171	187	197	199													
Т	159	173	189	199	201	203												
С	161	175	191	201	203	205	207											
I/L	171	185	201	211	213	215	217	227										
N	172	186	202	212	214	216	218	228	229									
D	173	187	203	213	215	217	219	229	230	231								
K/Q	186	200	216	226	228	230	232	242	243	244	257							
E	187	201	217	227	229	231	233	243	244	245	258	259						
Μ	189	203	219	229	231	233	235	245	246	247	260	261	263					
Н	195	209	225	235	237	239	241	251	252	253	266	267	269	275				
F ^b	205	219	235	245	247	249	251	261	262	263	276	277	279	285	295			
R	214	228	244	254	256	258	260	270	271	272	285	286	288	294	304	313		
Y	221	235	251	261	263	265	267	277	278	279	292	293	295	301	311	320	327	
W	244	258	274	284	286	288	290	300	301	302	315	316	318	324	334	343	350	373
GG=N=114; GA=K/Q=128; GV=R=156; GE=AD=SV=W=186.																		

[M+H]⁺ = <u>1464.7693</u> So, Mw = 1463.7693 Da

- First look at the dominant peak that below the mass.
- M y_{n-1} ion + 1 = mass of 1st residue on N terminus
- M- b_{n-1} ion 17 = mass of 1st residue on C terminus
- <u>1463.7693</u> 1351.69 + 1 = 113.0793, which is the mass of I/L. SO 1351.69 m/z represents an y_{n-1} ion and I/L is the N terminus residue.

I/L-

[M+H]⁺ = <u>1464.7693</u> So, Mw = 1463.7693 Da

- Amino acid sequence can be deduced by the $\Delta mass$ between adjacent y ion peaks or adjacent b ion peaks
- 2) $\Delta m/z = 1351.69 1238.61 = 113.08$, which is the mass of I/L.

3) See below.....

I/L-I/L

I/L-I/L-E-S-G-P-F-V-S-C_{CM}-V-...

4) 275.21 m/z is probably the y2 ion with 2 residues. Because it is an y ion, so the mass of two residues = y2 - 19 = 256.21, which are the sum of K and K.

m/z

m/z

Specific Amino Acids Modification During Sample Handling

- Reduction and Alkylation on Cys
 - Routinely done prior to enzymatic digestion to break disulfide bonds, unfolding proteins to make them more susceptible to enzymatic cleavage
- Methionine is easily mono-oxidized (Met sulfoxide)
- Cyclization of N-terminal Glutamine (Q) and carboxamidomethyl-Cys
- Urea exposure can carbamylate N termini of protein/peptide and side chains of Lys
- etc.

Physiochemical Complications to Spectrum Interpretation

- Incomplete fragmentation
- Inconsistent intensity of fragment ion types
- Chemical or posttranslational modifications
- Isobaric AAs
 - | = L
 - K = Q
- Isobaric AA combinations
 - GG = N
 - GA = K = Q
 - W = DA = VS

Schematic view of the function of MS-BLAST