Class Today

- Lecture 12: protein modeling
- Announcement
 - 1. Final exam: Open-book exam, Tuesday (June 4th) at 2 pm (Beijing Time)
 - 3 hours
 - in a campus computer room, but personal electronic devices are NOT allowed.
 - You are allowed to search the internet for information but not to copy text directly. Write the answers ONLY on the booklet provided in your own words and always acknowledge the source(s) from which your answers are derived.
- Assignment:
 - 1. Coursework 2 is due on Tuesday (May 7th) at 5 pm

LECTURE 12: PROTEIN MODELING

Can we predict protein structure from sequence?

- If there is a high degree of sequence identity between two proteins, their overall folds will be similar.
- There are many cases of two proteins having virtually identical overall folds and closely related functions despite having no statistically significant degree of sequence identity/similarity.
- The known protein structures and canonical protein folds are used to derive structure from sequence by different approaches.
 - Homology modeling
 - Threading
 - Fragment libraries based
 - Deep learning based
 - •

Homology Modeling of Proteins

Definition:

 A computational method for modeling the structure of a protein based on its sequence similarity to one or more other proteins of known structure.

Why a Model:

- A Model is desirable when X-ray crystallography, NMR spectroscopy or Cryo-EM cannot determine the structure of a protein in time or at all. The built model provides a wealth of information of how the protein functions with information at residue property level. This information can then be used for <u>mutational studies</u> or for <u>drug design</u>.
- **Note**: homology models can not (*not reliable*) be used to study conformational changes induced by ligand (proteins or small molecules) binding, pH changes, or post-translational modification, or the structural consequences of sequence insertions and deletions.

- Evolutionary data for a protein family can be used to measure statistical interactions between amino acid positions. It is based on two empirical observations:
 - 1. The functional coupling of two positions, even if distantly located in the structure, should mutually constrain evolution at the two positions, and this should be represented in the statistical coupling of the underlying amino-acid distributions in the multiple sequence alignment, which can then be mapped onto the protein.
 - 2. A lack of evolutionary constraints at one position should cause the distribution of observed amino acids at that position in the multiple sequence alignment to approach their mean abundance in all proteins, and deviances from the mean values should quantitatively represent conservation.

Steps in Homology Modeling

- Template selection
- Sequence alignment
- Backbone model building
- Loop modeling and side chain refinement
- Model refinement using energy function (Energy minimization)
- Model Evaluation

SWISS-MODEL

- https://swissmodel.expasy .org/interactive
- Steps:
 - 1. Input primary sequence
 - 2. Template search
 - 3. Template selection
 - 4. Model Building
 - 5. Model quality estimation

Start a New Modellin	g Project o		
Target Sequence(s): (Format must be FASTA,	Paste your target sequence(s) or UniProtKB AC here	Supported Inputs	>
Clustal, plain string, or a valid	1	Sequence(s)	•
UniProtKB AC)		Target-Template Alignment	•
		User Template	•
	+ Upload Target Sequence File CV Validate	DeepView Project	•
Project Title:	Untitled Project		
Email:	Optional		
	Search For Templates 2 Build Model		

Sum	nmary	Templates 50	Mod	lels	Project Da	ta 🕶		
Tem	plate	Results o						
Tem	plates	Quaternary St	ructure	Sequence	Similarity	Alignment	More -	
↓ †Sort	\$Cover	rage	≑ GMQE	\$ QSQE	Identity	Method	♦Oligo State	Ligands
	A0A8B5 AlphaFc	A2B4.1.A UniProtKI	B entry unkr 885A2B4 (g	nown, most like gene: unknown	ely obsolete , organism: u	nknown)		
~			0.88	3	99.53	AlphaFold v2	monomer √	None
	✓ 6zix.1.B Transcriptional regulatory protein ResB Structure of BosB from Salmonella enteriors services Timbimutium bound to promoter P1fibDC in the presence of abonhamimatic Be52							
~			0.61	0.53	30.39	X-ray, 3.4Å	homo-dimer √	2 x MG ^C , 2 x BEF ^C
508z.1.B Transcriptional regulatory protein RcsB Conformational dynamism for DNA interaction in Salmonella typhimurium RcsB response regulator.								
~			0.64	0.48	30.39	X-ray, 2.1Å	homo-dimer √	$2 \times BEF^{C}$, $2 \times MG^{C}$
	Svxn.2.A Transcriptional regulatory protein RcsB Structure of two RcsB dimers bound to two parallel DNAs.							
~			0.59	0.52	32.47	X-ray, 3.4Å	homo-dimer √	None
	Svxn.2.B Transcriptional regulatory protein RcsB Structure of two RcsB dimers bound to two parallel DNAs.							
~			0.59	0.52	32.47	X-ray, 3.4Å	homo-dimer √	None
	5w43.1.A Transcriptional regulatory protein RcsB Structure of the two-component response regulator RcsB-DNA complex							
\checkmark			0.60	0.51	32.47	X-ray, 3.1Å	homo-dimer √	None
	5hev.1.E	B Response regulato	or protein Vra Illofluoride-a	aR activated LiaR f	from Enteroco	occus faecium		
~			0.64	0.46	19.00	X-ray, 3.2Å	homo-dimer √	2 x MG [℃] , 2 x BEF [℃]

Profile-Based Threading

- Threading uses the structure to compute energy function during alignment
- predicts the structure of a sequence even if no sequence homologs are known
- In this method, a computer program forces the sequence to adopt every known protein fold in turn, and in each case a scoring function is calculated that measures the suitability of the sequence for that particular fold.
 - A high score of z value indicates high possibility that the sequence adopts this fold.

Fragment Libraries for Modeling

- Fragment libraries for short segments are extracted from the protein structure database.
- The conformational space defined by these fragments is then searched with an energy function that favors compact structures with paired strands and buried hydrophobic residues.
 - ~1000 independent simulations are carried out for each query sequence, and the resulting structures are clustered.

Some Modeling Programs

Modeller (https://salilab.org/modeller/) Swiss-Model (https://swissmodel.expasy.org/) **RoseTTAFold Server** (registration needed) (https://robetta.bakerlab.org/submit.php) AlphaFold2 (http://github.com/sokrypton/colabFold) database(https://alphafold.ebi.ac.uk/)

RoseTTA Fold

• RoseTTAFold is a "three-track" neural network.

- 1D: sequences
- 2D: distances
- 3D: coordinates

Georgie rosettafold server ×	. <u>.</u> .	
All Images Videos Shopping News : More	Tools	
Calculator Free Github		
About 21,100 results (0.29 seconds)		
S Robetta https://robetta.bakerlab.org		
Robetta - Baker Lab Features include relatively fast and accurate deep learning based methods, RoseTTAFold	Robetta Project - Struct	ure Prediction 👻 📕
TrRosetta, and an interactive submission interface that allows Login · Frequently Asked Questions · Structure Prediction Queue Register	Submit a job for structure Please do not submit jobs unde	prediction r different user accounts. Such jobs will be removed.
	Required	
	Target Name 😧	
	Protein sequence 😧	
		or upload FASTA Choose File No file chosen
	Optional	
	RoseTTAFold 😧 🗹 CM 🤅	AB 😧 🗆 Predict domains 😧 🗆
		Upload MSA 🚱 🖹 Choose File No file chosen
		Submit 3 + 2 = Keep private 😧 🗆
	Coweee ex	

AlphaFold2

• AlphaFold2 is a multicomponent artificial intelligence (AI) system that uses machine learning to predict a protein's 3D structure based on its primary amino acid sequence.

AlphaFold is **NOT** a homology modelling tool: it can successfully operate without using any template structures and even predict previously unknown protein folds.

1. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A., Ballard, A. J., Cowie, A., Nikolov, S., Jain, R., Adler, J., Back, T., . . . Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature*, *596*(7873), 583-589.

2. Bryant, P., Pozzati, G., & Elofsson, A. (2022). Improved prediction of protein-protein interactions using AlphaFold2. Nature Communications, 13(1), 1-11. https://doi.org/10.1038/s41467-022-28865-w

Four Ways of Using AlphaFold 2

- 1. use the AlphaFold database (<u>https://alphafold.ebi.ac.uk</u>)
- 2. use homology search.
 - If your protein of interest is not listed in UniProt, you can use the homology search functions provided by EMBL-EBI at <u>https://www.ebi.ac.uk/Tools/sss/fasta/</u>.
- 3. use AlphaFold Colab or ColabFold

(https://colab.research.google.com/github/sokrypton/ColabFold/blob/main/AlphaFold 2.ipynb#scrollTo=G4yBrceuFbf3)

- Accuracy is not as high as that of the original AlphaFold 2
- 4. install and run it yourself. You can choose either <u>the Docker</u> <u>version</u> or <u>the non-Docker setup</u>.
 - Adjust parameters
 - But it is costly and requires knowledge

AlphaFold2_advanced.ipynb	🕒 Share 🏛
File Edit View Insert Runtime Tools Help	
Code + Text 💩 Copy to Drive	RAM Disk
AlphaFold2_advanced	
This notaback modifies deepmind's original notaback (hefere AlphaEeld-Multimer existed) to add experimental support for modeling	
complexes (both homo and hetero-oligomers), option to run MMseqs2 instead of Jackhmmer for MSA generation and advanced functionality.	
See <u>ColabFold</u> for other related notebooks	
Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: Making protein folding accessible to all. Nature Methods, 2022	
Limitations	
This notebook does NOT use Templates.	
This notebook does NOT use AlphaFold-Multimer for complex (protein-protein) modeling.	
• For a typical Google-Colab session, with a 16G-GPU, the max total length is 1400 residues. Sometimes a 12G-GPU is assigned, in which the	
max length is ~1000 residues.	
Can I use the models for Molecular Replacement? Yes, but be CAREFUL, the bfactor column is populated with pLDDT confidence values	
Install software Please execute this cell by pressing the <i>Play</i> button on the left.	
Show code	
	↑↓☺\$
Enter the amino acid sequence to fold 1	
jobname: "test	
homooligomer: 1	
sequence Specify protein sequence to be modelled.	
 Use / to specify intra-protein chainbreaks (for trimming regions within protein). 	
• Use : to specify inter-protein chainbreaks (for modeling protein-protein hetero-complexes).	
 Use : to specify inter-protein chainbreaks (for modeling protein-protein hetero-complexes). For example, sequence AC/DE: FGH will be modelled as polypeptides: AC, DE and FGH. A seperate MSA will be generates for ACDE and FGH. If pair_msa is enabled, ACDE's MSA will be paired with FGH's MSA. 	
 Use : to specify inter-protein chainbreaks (for modeling protein-protein hetero-complexes). For example, sequence AC/DE:FGH will be modelled as polypeptides: AC, DE and FGH. A seperate MSA will be generates for ACDE and FGH. If pair_msa is enabled, ACDE's MSA will be paired with FGH's MSA. homooligomer Define number of copies in a homo-oligomeric assembly. 	
 Use : to specify inter-protein chainbreaks (for modeling protein-protein hetero-complexes). For example, sequence AC/DE:FGH will be modelled as polypeptides: AC, DE and FGH. A seperate MSA will be generates for ACDE and FGH. If pair_msa is enabled, ACDE's MSA will be paired with FGH's MSA. homooligomer Define number of copies in a homo-oligomeric assembly. Use : to specify different homooligomeric state (copy numer) for each component of the complex. 	
 Use : to specify inter-protein chainbreaks (for modeling protein-protein hetero-complexes). For example, sequence AC/DE: FGH will be modelled as polypeptides: AC, DE and FGH. A seperate MSA will be generates for ACDE and FGH. If pair_msa is enabled, ACDE's MSA will be paired with FGH's MSA. homooligomer Define number of copies in a homo-oligomeric assembly. Use : to specify different homooligomeric state (copy numer) for each component of the complex. For example, sequence: ABC: DEF, homooligomeric 2:1, the first protein ABC will be modeled as a homodimer (2 copies) and second DEF a monomer (1 copy). 	

AlphaFold2

- Ranked by either average pLDDT (predicted local distance difference test), pTM (multimer)
 - Considers local environment < 4 Å around C α
 - Higher pLDDT/pTM is better
- pLDDT scoring
 - < 50 Disordered/bad quality
 - 50-70 low quality
 - 70-90 Backbone probably correct
 - >90 High quality

- AlphaFold2 can be used for:
- 1. Structure prediction of novel proteins
- 2. Models for CryoEM and Crystallography
- 3. Guidance for protein construct design
- 4. Investigating intrinsically disordered proteins
- 5. Predict oligomer state/complex structure
- 6. Predict alternative protein conformation
- 7. Predict effects of mutation

etc...

Akdel, M., Pires, D. E., Pardo, E. P., Jänes, J., Zalevsky, A. O., Mészáros, B., Bryant, P., Good, L. L., Laskowski, R. A., Pozzati, G., Shenoy, A., Zhu, W., Kundrotas, P., Serra, V. R., Rodrigues, C. H., Dunham, A. S., Burke, D., Borkakoti, N., Velankar, S., . . . Beltrao, P. (2022). A structural biology community assessment of AlphaFold2 applications. *Nature Structural & Molecular Biology*, 29(11), 1056-1067. https://doi.org/10.1038/s41594-022-00849-w

Confirming Catalytic Residues/Binding Sites

- Active site residues in a structure can sometimes be recognized computationally by their geometry
- Site-directed mutagenesis can identify residues involved in binding or catalysis
- Docking programs(e.g., MOE) model the binding of ligands
 - Each ligand is divided into a small set of rigid fragments that are docked separately into the binding site, allowing a degree of flexibility at the positions that join them.
 - Can be used to find possible new compounds for drug development
 - *Note*: This method cannot take unknown conformational changes of the protein into account. So, it could only be used to find candidates.

- Single protein chains
- Protein multimers
- Multisubunit proteinprotein complexes

- Multiple conformations for the same sequence
- Effects of point mutations
- Antigen-antibody interactions

- Protein-DNA and protein-RNA complexes
- Nucleic acid structure
- Ligand and ion binding
- Post-translational modifications
- Membrane plane for transmembrane domains

Optional Assignment but recommended

• Try to predict the protein structure with RossettaFold and AlphaFold. The AA sequence is shown below:

HHHHHHGSLQDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRR LMEAFAKRQGKEMDSLRFLYDGIRIQADQAPEDLDMEDNDIIEAHREQIGGMA SEARGGLGAPPLQSARSLPGPAPCLKHFPLDLRTSMDGKCKEIAEELFTRSLAESE LRSAPYEFPEESPIEQLEERRQRLERQISQDVKLEPDILLRAKQDFLKTDSDSDLQL YKEQGEGQGDRSLRERDVLEREFQRVTISGEEKCGVPFTDLLDAAKSVVRALFIR EKYMALSLQSFCPTTRRYLQQLAEKPLETRTYEQGPDTPVSADAPVHPPALEQH PYEHCEPSTMPGDLGLGLRMVRGVVHVYTRREPDEHCSEVELPYPDLQEFVAD VNVLMALIINGPIKSFCYRRLQY